

U1401A 휴대용 다기능 교정기 / 미터기

사용 및 서비스 설명서

고지

© Agilent Technologies, Inc. 2009

본 설명서의 어떤 부분도 어떤 형식 또 는 수단 (전자적 저장 및 수정, 외국어 로의 번역 포함)으로도 미국 및 국제 저 작권법에 따라 Agilent Technologies, Inc. 의 사전 동의 및 서명 동의 없이 복사하 는 것을 금합니다.

설명서 부품 번호

U1401-90008

판

초판 : 2009 년 1 월 12 일

말레이시아에서 인쇄

Agilent Technologies, Inc. 3501 Stevens Creek Blvd. Santa Clara, CA 95052 USA

품질보증

이 문서의 내용은 " 있는 그대로 " 제공되며 향후 발행물에서 예고 없 이 변경될 수 있습니다. 그리고 Agilent는 해당 법규가 허용하는 범 위 내에서 본 설명서 및 여기 포함 된 모든 정보 (상품성 및 특정 목적 에의 적합성을 포함하며 이에 제한 되지 않음)에 대한 명시적 또는 묵 시적인 모든 보증을 부인합니다. Agilent는 본 문서 또는 여기 포함된 정보의 제공 , 사용 또는 실시와 관 련된 모든 오류 또는 부수적 또는 파생적 손상에 대해 책임을 지지 않 습니다 . Agilent 와 사용자가 본 문 서의 내용에 해당하는 보증 조항이 포함된 별도의 서면 계약을 체결한 경우,별도계약의 보증 조항이 우 선권을 갖습니다.

기술 라이센스

본 문서에 설명된 하드웨어 및 / 또는 소 프트웨어는 라이센스에 의해 제공되며 이 라이센스에 의해 사용 또는 복제될 수 있습니다.

제한적 권리 범주

미국 정부의 제한적 권리 연방 정부에 제 공된 소프트웨어 및 기술 데이터 권리는 최종 사용자 고객에게 통상적으로 허용 되는 권리만을 포함합니다 . Agilent 는 FAR 12.211 (기술 데이터) 및 12.212 (컴퓨 터 소프트웨어) 와 국방부에 대한 DFARS 25.227-7015 (기술 데이터 – 상용 품목) 및 DFARS 227.7202-3 (상용 컴퓨터 소프트 웨어 또는 컴퓨터 소프트웨어 문서에 대 한 권리)에 따라 이 통상적 상용라이센 스를 제공합니다.

안전 고지

주의 고지는 위험 사항을 알려 줍니다. 올바로 수행하거나 준 수하지 않으면 제품이 손상되거 나 중요한 데이터가 손실될 수 있는 작동 절차와 실행 방식 등 에 주의를 요합니다. 발생한 상 황을 완전히 이해하여 해결하기 전에는 **주의** 고지 이후 내용으 로 넘어가지 마십시오.

경고

경고 고지는 위험 사항을 알려줍 니다. 올바로 수행하거나 준수 하지 않으면 상해나 사망을 초래 할 수 있는 작동 절차와 실행 방 식 등에 주의를 요합니다. 발생 한 상황은 완전히 이해하여 해결 하기 전에는 경고 고지 이후 내 용으로 넘어가지 마십시오.

안전 기호

	직류 (DC)	\bigcirc	전원 차단
\langle	교류 (AC)		전원 공급
$\left \right\rangle$	직류 및 교류		주의 , 감전 위험
3~	3 상 교류	\mathbf{V}	주의 , 위험 요소가 있음 (구체적인 경고 또는 주의 정보는 본 매뉴얼을 참조하십 시오 .)
-ļι	접지 단자		주의 , 뜨거운 표면
	보호용 컨덕터 단자		쌍안정 누름 컨트롤을 누르지 않은 상태
	프레임 또는 섀시 단자		쌍안정 누름 컨트롤을 누른 상태
Å	등전위	범주 II 150V	범주 II 150V 과전압 보호
	장비는 전체적으로이중 절연이나 강화 절연을 통해보호됩니다		

계측기와 본 문서의 다음 기호는 계측기의 안전한 작동을 유 지하기 위해 취해야 하는 수칙을 나타냅니다 .

일반 안전 정보

계측기 작동, 서비스 및 수리의 모든 단계에서 다음과 같은 일반 안 전 주의사항을 준수해야 합니다.이 수칙 또는 본 설명서 다른 곳의 특정 경고를 지키지 않으면 설계, 제조의 안전 표준 및 계측기의 의 도된 사용을 위반하는 것입니다. Agilent 테크놀로지스는 고객이 이 요구사항을 지키지 않은 것에 대한 책임을 지지 않습니다.

- 경고
- DC 60V, AC 30Vrms 또는 AC 42.4Vpeak 를 초과하는 경우에는 감전 의 위험이 있으므로 주의를 기울여야 합니다.
- 단자 간에 또는 단자와 접지 간에 정격 전압 (계측기에 표시되어 있음)을 초과하는 경우에는 측정을 하지 마십시오.
- 정해진 전압을 측정해 계측기 작동 상태를 이중 점검해야 합니다.
- 본 계측기는 CAT II 150 V 조건에서 측정하도록 설계되었습니다. 전압이 150 V 를 초과한 상태에서 측정하지 마십시오.
- 전류 측정의 경우,계측기를 회로에 연결하기 전에 회로 전원을 끄십시오. 항상 계측기를 회로와 직렬로 두십시오.
- 프로브를 연결할 때에는 항상 공통 테스트 프로브를 먼저 연결하 십시오.프로브를 분리할 때에는 항상 라이브 테스트 프로브를 먼저 분리하십시오.
- 배터리 덮개를 열기 전에 계측기에서 테스트 프로브를 분리합니다.
- 배터리 커버 또는 커버 부분이 제거되거나 헐거운 상태로 계측기 를 사용하지 마십시오.
- 화면에서 배터리 부족 표시 기호 由 가 깜박이면 곧바로 배터리 를 충전하거나 교체합니다. 그래야 전기 충격 또는 사용자의 부 상을 유발할 수 있는 판독 오류를 피할 수 있습니다.
- 계측기가 손상된 경우에는 사용하지 마십시오.계측기를 사용하 기 전에 케이스를 검사하십시오.균열이나 유실된 플라스틱이 있는지 확인하십시오.폭발성 가스,증기 또는 먼지 주변에서 계 측기를 조작하지 마십시오.
- 테스트 프로브에 절연이 손상되었거나 금속 부분이 노출되었는 지 검사하고 연속성을 확인하십시오.테스트 프로브가 손상된 경우에는 사용하지 마십시오.
- Agilent 가 이 제품에 대해 인증하지 않은 다른 AC 충전기 어댑터 는 사용하지 마십시오.
- 수리한 퓨즈 또는 단락 회로 퓨즈 흘더는 사용하지 마십시오. 화 재로부터의 지속적인 보호를 위해 라인 퓨즈는 동일한 전압 및 전 류 정격의 권장되는 유형만 사용하십시오.

경고

- 혼자 서비스 작업을 실시하거나 조정을 수행하지 마십시오. 특 정 조건에서는 장비를 끈 상태에서도 위험 전압이 존재할 수 있습 니다. 감전 사고를 피하려면 인공호흡법이나 응급처치 능력이 있는 사람이 옆에 있는 상태에서만 내부 수리나 조정을 시도해야 합니다.
- 기타 다른 위험을 피하려면 부품을 대체시키거나 장비를 개조하 지 마십시오. 안전 기능의 유지를 보장하기 위한 서비스 및 수리 를 원하면 Agilent 테크놀로지스 영업 및 서비스 사무소로 제품을 반환하십시오.
- 장비가 손상되면 제품에 내장된 안전 보호 기능이 물리적 손상, 과도한 습기 등의 이유로 저하될 수 있으므로 사용하지 마십시오. 서비스 직원이 안전 상태를 확인할 때까지 전원을 끄고 제품을 사 용하지 마십시오.필요한 경우, 안전 기능의 유지를 보장하기 위 한 서비스 및 수리를 원하면 Agilent 테크놀로지스 영업 및 서비스 사무소로 제품을 반환하십시오.

주 의	•	저항 및 캐패시턴스 측정이나 연속성 및 다이오드 테스트를 수 핵하려면 먼저 히로에서 전원을 끄고 고전알 캐패시터를 모두
		방전시킵니다.
	•	측정에 적합한 단자 , 기능 및 범위를 사용하십시오 .
	•	전류 측정을 선택한 경우에는 전압을 측정하지 마십시오 .
	•	권장하는 충전지만 사용하십시오 . 계측기에 배터리를 적절히 올바른 극성에 맞게 삽입하십시오 .
	•	배터리 충전 도중에는 모든 단자에서 테스트 리드를 제거하십

시오.

환경 조건

본 계측기는 실내용으로 제작한 것이며 응결이 적은 장소에 서만 사용해야 합니다 . 아래 표는 본 계측기의 일반 환경 요 구사항을 정리해 놓은 것입니다 .

환경 조건	요구사항
작동온도	0°C~40°C에서 최대 정확도
작동 습도	최고 온도 31°C일 경우 최고 80% R.H. (상대 습도) 까지의 최대 정확도 (40°C 에서 50% R.H. 까지 직선으로 떨어짐)
보관 온도	–20°℃~60°℃(배터리를 뺀 상태)
보관 습도	5%~80% R.H. (비응결)
높이	최 대 2000m
오염도	오염도 2

주의

휴대용 다기능 교정기 / 미터기는 아래와 같은 안전 및 EMC 규정을 준수합니다.

- IEC 61010-1:2001/EN 61010-1:2001 (2 차 개정)
- 캐나다 : CAN/CSA-C22.2 No. 61010-1-04
- 미국: ANSI/UL 61010-1:2004
- IEC 61326-2-1:2005/EN 61326-2-1:2006
- 캐나다: ICES-001:2004
- 호주 / 뉴질랜드 : AS/NZS CISPR11:2004

주의

일부 제품 사양이 저하되면 주위에 전자기장과 노이즈가 생겨 계측 기의 전원라인이나 I/O 케이블에 연결될 수 있습니다. 주위 전자기 장과 노이즈를 제거하거나 주위 전자기장으로부터 제품을 보호하 거나 제품 케이블 연결을 주위 EM 노이즈로부터 차폐할 경우 제품 이 모든 사양대로 자동 복구되어 작동합니다.

규제 표시

ISM 1-A	CE 마크는 EC 의 등록 상표입니다 . CE 마크는 제품이 관련된 모든 유럽 법적 지침을 준수함을 나타냅니다 .	C N10149	C-tick 마크는 Spectrum Management Agency of Australia 의 등록 상표입니 다 . 이는 1992 년의 Radio Communication Act 조항 하의 호주 EMC 프레임워크 규정을 준수함을 나타냅니다 .
ICES/NMB-001	ICES/NMB-001 은 본 ISM 장치가 캐 나다 ICES-001 에 부합함을 나타냅 니다 . Cet appareil ISM est confomre a la norme NMB-001 du Canada.		이 계측기는 WEEE 지침 (2002/96/EC) 마크 요구사항을 준수 합니다 . 부착된 제품 라벨은 본 전 자 / 전기 제품을 국내 가정용 폐기 물로 폐기할 수 없음을 나타냅니다 .
	CSA 마크는 Canadian Standards Association 의 등록 상표입니다 .		

WEEE (Waste Electrical and Electronic Equipment) 지침 (2002/96/EC)

이 계측기는 WEEE 지침 (2002/96/EC) 마크 요구사항을 준수 합니다 . 부착된 제품 라벨은 본 전자 / 전기 제품을 국내 가정 용 폐기물로 폐기할 수 없음을 나타냅니다 .

제품 범주 :

WEEE 지침 별첨 1 의 장비 유형을 참조하면 이 계측기는 "모 니터링 및 제어 계측기 "제품으로 분류됩니다.

별첨된 제품 라벨은 아래와 같이 표시됩니다.

일반 쓰레기와 함께 폐기하지 마십시오.

이 필요 없는 계측기를 반환하려면 가까운 Agilent 테크놀로 지스에 연락하거나 자세한 내용은

www.agilent.com/environment/product

를 방문하십시오.

이 설명서에서 ...

1 시작하기

이 장에서는 U1401A 휴대용 다기능 교정기 / 미터기 전면판, 회 전 스위치, 키패드, 디스플레이, 단자 및 후면판을 간략히 소개 합니다.

2 교정기 출력 작동

이 장에서는 U1401A 를 사용해 신호를 만드는 방법을 자세히 설 명합니다.

3 측정 수행

이 장에서는 U1401A 를 사용해 측정하는 방법을 자세히 설명합 니다.

4 기본 설정 변경

이 장에서는 U1401A 의 기본 설정을 변경하는 방법을 설명합니다.

5 어플리케이션 예

이 장에서는 U1401A 에 대한 몇 가지 어플리케이션 예를 설명합 니다.

6 유지보수

이 장에서는 U1401A 의 장애 문제 해결 방법을 소개합니다.

7 성능 테스트 및 교정

이 장에서는 U1401A 가 공개 사양에 맞게 작동하도록 하기 위해 필요한 성능 검사 절차와 조정 절차를 설명합니다.

8 사양

이 장에서는 U1401A 의 사양을 자세히 설명합니다.

	Agilent	Technologies	
--	---------	--------------	--

DECLARATION OF CONFORMITY According to EN ISO/IEC 17050-1:2004

Manufacturer's Name: Manufacturer's Address: Agilent Technologies Microwave Products (M) Sdn. Bhd Bayan Lepas Free Industrial Zone, 11900, Bayan Lepas, Penang, Malaysia

Declares under sole responsibility that the product as originally delivered:

Product Name:	Handheld Multi-Function Calibrator/Meter
Models Number:	U1401A
Product Options:	This declaration covers all options of the above product(s)

complies with the essential requirements of the following applicable European Directives, and carries the CE marking accordingly:

Low Voltage Directive (2006/95/EC) EMC Directive (2004/108/EC)

and conforms with the following product standards:

EMC Standard IEC 61326-2-1:2005 / EN 61326-2-1:2006

CISPR 11:2003 / EN55011:2007 IEC 61000-4-2:2001 / EN 61000-4-2:1995+A1:1998+A2:2001 IEC 61000-4-3:2002 / EN 61000-4-3:2002

IEC 61000-4-4:2004 / EN 61000-4-4:2004 IEC 61000-4-5:2001 / EN 61000-4-5:1995+A1:2001 IEC 61000-4-6:2003 / EN 61000-4-6:2003 IEC 61000-4-11:2004 / EN 61000-4-11:2004 Class A Group 1 4 kV CD, 8 kV AD 3 V/m (80 MHz-1.0 GHz) 3 V/m (1.4 GHz-2.0 GHz) 1 V/m (2.0 GHz-2.7 GHz) 1 kV signal lines, 2 kV power lines 1 kV line-line, 2 kV line-ground 3 V (0.15 MHz-80 MHz) 100% Dip (1 cycle) 60% Dip (10 cycles) 30% Dip (25 cycles) 100% short interruptions (250 cycles)

Canada: ICES-001:2004 Australia/New Zealand: AS/NZS CISPR11:2004

The product was tested in a typical configuration with Agilent Technologies test systems.

Safety IEC 61010-1:2001 / EN 61010-1:2001 USA: ANS//UL 61010-1:2004 Canada: CAN/CSA-C22.2 No. 61010-1-04

Supplementary Information:

14-Jan-09 Date

U1401A falls under the scope of IEC / EN 61326-2-1 as sensitive test and measurement equipment for EMC unprotected applications.

This DoC applies to above-listed products placed on the EU market after:

Limit

Tay Eng Su

Quality Manager

For further information, please contact your local Agilent Technologies sales office, agent or distributor, or Agilent Technologies Deutschland GmbH, Herrenberger Straße 130, 71034 Böblingen, Germany.

Template: A5971-5302-2, Rev. E.00

U1401A

DoC Revision 1.0

Product Regulations

EMC

Performance Criteria

Α

А

в

CISPR 11:2003 / EN55011:2007	Group 1 Class A
IEC 61000-4-2:2001 / EN 61000-4-2:1995+A1:1998+A2:2001	A
IEC 61000-4-3:2002 / EN 61000-4-3:2002	В
IEC 61000-4-4:2004 / EN 61000-4-4:2004	В
IEC 61000-4-5:2001 / EN 61000-4-5:1995+A1:2001	А
IEC 61000-4-6:2003 / EN 61000-4-6:2003	В
IEC 61000-4-11:2004 / EN 61000-4-11:2004	
 100% Dip (1 cycle) 	А
• 60% Dip (10 cycles)	А

60% Dip (10 cycles) . 30% Dip (25 cycles) . 100% Short Interruptions (250 cycles) Canada: ICES-001:2004

Australia/New Zealand: AS/NZS CISPR11:2004

IEC 61326-2-1:2005 / EN 61326-2-1:2006

Safety IEC 61010-1:2001 / EN 61010-1:2001 Canada: CAN/CSA-C22.2 No. 61010-1-04

USA: ANSI/UL 61010-1:2004

Additional Information:

The product herewith complies with the essential requirements of the Low Voltage Directive 2006/95/EC and the EMC Directive (2004/108/EC) and carries the CE Marking accordingly (European Union).

¹Performance Criteria:

A Pass - Normal operation, no effect. B Pass - Temporary degradation, self recoverable. C Pass - Temporary degradation, operator intervention required. D Fail - Not recoverable, component damage. N/A - Not applicable due to the product is a battery operated device

Notes:

Regulatory Information for Canada

ICES/NMB-001:2004 This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme à la norme NMB-001 du Canada.

Regulatory Information for Australia/New Zealand

This ISM device complies with Australian/New Zealand AS/NZS CISPR11:2004 CN10149

1 시작하기

U1401A 휴대용 다기능 교정기 / 미터기 소개 2 표준 구매 품목 3 액세서리 목록 4 제품개요 5 슬라이드 스위치 5 전면판개요 7 회전 스위치 개요 8 키패드 개요 9 디스플레이 개요 13 단자 개요 17 뒷면 개요 19 Hz 키를 포함한 디스플레이 선택 항목 20 DUAL 키를 포함한 디스플레이 선택 항목 22

원격통신 23

2 교정기 출력 작동

출력 활성화 및 비활성화 28 정전압 작동 29 정전류 작동 30 메모리 생성 31 오토스캔 출력 31 오토램프 출력 36 사각파 출력 41

3 측정 수행

전압 측정 46

DC 전압 측정 46

차례

AC 전압 측정 48 전류 측정 49 DC mA 측정 49 DC mA 측정의 비율 스케일 50 온도 측정 51 저항 측정 및 연속성 테스트 54 측정 중 경보 및 경고 56 전압 측정 시 과부하 경고 56 수학 연산 57 동적 기록 57 상대 (제로) 60 트리거링 작동 61 Data Hold (수동 트리거) 61 Refresh Hold (자동 트리거) 62 1ms Peak Hold 63 4 기본 설정 변경 Setup 모드로 들어가기 66 이용할 수 있는 설정 옵션 68

Data Hold/Refresh Hold 모드 설정 69 온도 단위 설정 71 신호기 주파수 설정 73 측정 가능한 최소 주파수 설정 74 비율 배율 판독값 설정 75 인쇄 모드 설정 76 반향 모드 설정 77 데이터 비트 설정 78 패리티 검사 설정 79 전송속도설정 80 디스플레이 백라이트 타이머 설정 81

절전 모드 설정 82

5 어플리케이션 예

mA 출력용 소스 모드 86 mA 출력용 시뮬레이션 모드 88 전류 루프에서 2- 와이어 송신기 시뮬레이션 90 압력 트랜스듀서 측정 92 제너 (Zener) 다이오드 테스트 94 다이오드 테스트 96 BJT (Bipolar Junction Transistor) 테스트 98 트랜지스터 h_{fe} 계산 102 JFET (Junction Field-Effect Transistor) 스위치 테스트 104 연산 증폭기 검증 108 전류 - 전압 컨버터 108 전압 - 전류 컨버터 110 적분기:사각파를 삼각파로 변환 111 2- 와이어 송신기 확인 113 주파수 송신기 확인 115

6 유지보수

유지보수 118 일반유지보수 118 배터리 교체 119 배터리 충전 120 퓨즈 교체 121 문제 해결 123

7 성능 테스트 및 교정

교정개요 126

케이스를 열지 않은 상태로 전자 교정 126

Agilent 테크놀로지스 교정 서비스 126 교정 주기 127 환경 조건 127 예열 127 권장테스트장비 128 조정고려사항 129 조정 절차 130 온도 교정 130 출력 교정 131 성능 검증 테스트 134 자가 검증 134 입력 성능 검증 135 출력 성능 검증 139 사양 일반사양 144 측정 범주 146 측정 범주 정의 146 입력사양 147 DC사양 147 AC 사양 148 AC+DC 사양 149 온도 사양 150 주파수 사양 151 1ms Peak Hold 사양 153 저항사양 153 다이오드 점검 및 가청 연속성 사양 154 출력 사양 155 정전압 및 정전류 출력 155

8

사각파 출력 156

표목록

표 1-1. 액세서리 목록 4
표 1-2. 슬라이드 스위치 기능 5
표 1-3. 회전 스위치 위치와 각 위치의 기능 8
표 1-4. 키패드 기능 10
표 1-5. 변경 기능이 포함된 지침 12
표 1-6. 표시 기호 설명 14
표 1-7. 단자 설명 17
표 1-8. 입력 단자의 과부하 보호 18
표 1-9. Hz 키를 포함한 측정 기능과 해당 디스플레이 선
택 20
표 1-10. DUAL 키를 포함한 측정 기능과 해당 디스플레이 선
택 22
표 2-1. 오토스캔 줄력의 기본 설정 33
표 2-2. 오토램프 줄력의 기본 설정 37
표 2-3. 사용 가능한 수 바수 41
표 3-1. 가정 연속성 측성 범위 54
표 4-1. 설정 옵션 및 기본 설정 68
표 5-1. mA 줄력 압력 트랜스뉴서의 일반 압력 범위와 죄내 줄
역신입 92
표 5-2. 프도브 데스트에 따른 기존 연사 99
표 5-3. 편 3 이 기존할 경우 국정 및 단사 99
표 5-4. 편 2 가 기존할 경우 국정 및 단사 100
표 5-5. 찐 1 이 기존일 경우 국장 및 단사 100
표 5-6. 핀 2 가 기존일 경우 국장 및 단사 101
표 5-7. 프로브 테스트에 따든 게이트 단사 105
표 6-1. 퓨스 사양 122
표 6-2. 군제 얘결 123
표 7-1. 권장 데스트 장미 128
표 /-2. 굴억 신입 보상 열사 132 표 7 2 초려 편리 그 전 전 한 1 2 2
표 /- 3. 물역 신뉴 포싱 실사 이 / 33

표 7-4. 자가 검증이 가능한 기능 134

표 7-5. 입력 성능 검증 테스트 135
표 7-6. 출력 성능 검증 테스트 139
표 8-1. DC mV / 전압 사양 147
표 8-2. DC 전류 사양 148
표 8-3. AC mV / 전압 사양 148
표 8-4. AC 전류 사양 149
표 8-5. AC+DC mV/ 전압 사양 149
표 8-6. AC+DC 전류 사양 150
표 8-7. 온도 사양 150
표 8-8. 주파수 사양 151
표 8-9. 전압 측정 시 주파수 감도 및 트리거 레벨 사양 151
표 8-10. 듀티사이클 사양 152
표 8-11. 펄스 폭 사양 152
표 8-12. 전류 측정 시 주파수 감도 사양 152
표 8-13. Peak Hold 사양 153
표 8-14. 저항 사양 153
표 8-15. 다이오드 점검 사양 154
표 8-16. 정전압 (CV) 출력 사양 155
표 8-17. 정전류 (CC) 출력 사양 155
표 8-18. 사각파 출력 사양 156

그림목록

그림 1-1. 슬라이드 스위치 5 그림 1-2. 전면판 7 그림 1-3. 회전 스위치 8 그림 1-4. 키패드기능 9 그림 1-5. 키패드 이동 기능 10 그림 1-6. 전체 표시 13 그림 1-7. 단자 17 그림 1-8. 후면판 19 그림 1-9. IR-USB 케이블 24 그림 1-10. IR-USB 케이블 연결 24 그림 1-11. IR-USB 케이블 25 그림 2-1. 오토스캔 출력 모드 선택 34 그림 2-2. 일반 오토스캔 출력의 예 34 그림 2-3. 오토스캔 출력 정의 36 그림 2-4. 오토램프 출력 모드 선택 38 그림 2-5. 램프 출력 38 그림 2-6. 오토램프 출력 정의 40 그림 2-7. 사각파 출력의 파라미터 선택 43 그림 3-1. DC 전압 측정 47 그림 3-2. AC 전압 측정 48 그림 3-3. DC 전류 (mA) 측정 49 그림 3-4. 표면 온도 측정 53 그림 3-5. 저항 측정 55 그림 3-6. 연속성 테스트 활성화 및 비활성화 55 그림 3-7. 동적 기록 모드 59 그림 3-8. 상대 (0) 모드 60 그림 3-9. Data Hold 모드 61 그림 3-10. 1ms Peak Hold 모드 64 그림 4-1. Setup 모드로 들어가기 66 그림 4-2. Data Hold 또는 Refresh Hold 모드 설정 70 그림 4-3. 온도 단위 설정 72

그림목록

그림 4-4. 신호기 주파수 설정 73 그림 4-5. 최소 주파수 설정 74 그림 4-6. 비율 배율 설정 75 그림 4-7. 원격 제어를 위한 인쇄 모드 설정 76 그림 4-8. 원격 제어를 위한 반향 모드 설정 77 그림 4-9. 원격 제어를 위한 데이터 비트 설정 78 그림 4-10. 원격 제어를 위한 패리티 검사 설정 79 그림 4-11. 원격 제어를 위한 전송 속도 설정 80 그림 4-12. 디스플레이 백라이트 타이머 설정 81 그림 4-13. 자동 꺼짐 모드 설정 83 그림 5-1. 소스 모드에서 4mA~20mA 전류 루프 테스트 87 그림 5-2. mA 출력 시뮬레이션 89 그림 5-3. 2- 와이어 송신기 시뮬레이션을 수행하기 위해 노 란색 테스트 리드 사용. 91 그림 5-4. 압력 트랜스듀서 측정 93 그림 5-5. 제너 다이오드 테스트 95 그림 5-6. 다이오드 테스트 97 그림 5-7. TO-92 트랜지스터 98 그림 5-8. TO-3 트랜지스터 101 그림 5-9. 트랜지스터 h_{fe} 계산 103 그림 5-10. TO-92 JFET 104 그림 5-11. N 채널 JFET 106 그림 5-12. P 채널 JFET 107 그림 5-13. 전류 - 전압 컨버터 109 그림 5-14. 전압 - 전류 컨버터 111 그림 5-15. 사각파를 삼각파로 변환 112 그림 5-16. 2- 와이어 송신기 확인 114 그림 5-17. 주파수 송신기 확인 116 그림 6-1. 배터리 교체 119 그림 6-2. 배터리 충전 121 그림 6-3. 퓨즈 교체 122 그림 7-1. 출력 전압 검증 140 그림 7-2. 출력 전류 검증 141

그림 7-3. 사각파 출력 검증 141

U1401A 휴대용 다기능 교정기 / 미터기 사용 및 서비스 설명서

시작하기

U1401A 휴대용 다기능 교정기 / 미터기 소개 2 표준 구매 품목 3 액세서리 목록 4 제품 개요 5 슬라이드 스위치 5 전면판 개요 7 회전 스위치 개요 8 키패드 개요 9 디스플레이 개요 13 단자 개요 17 뒷면 개요 19 Hz 키를 포함한 디스플레이 선택 항목 20 DUAL 키를 포함한 디스플레이 선택 항목 22 원격 통신 23

이 장에서는 U1401A 휴대용 다기능 교정기 / 미터기전면판, 회전 스위 치, 키패드, 디스플레이, 단자 및 후면판에 대해 간략히 설명합니다.

U1401A 휴대용 다기능 교정기 / 미터기 소개

U1401A 의 핵심 기능은 다음과 같습니다.

- 동시 신호 발생 및 측정
- DC, AC, AC+DC 전압 및 전류 측정
- DC 전압, DC 전류, 사각파 출력
- 지능형 출력 및 대기 제어
- 충전 기능이 내장되어 있는 Ni-MH 충전지
- 배터리를 빼낼 필요 없는 스마트 충전기 설계
- 5 디지트 LCD 디스플레이가 탑재된 밝은 EL (전자발광)백라 이트
- 4mA~20mA 또는 0mA~20mA 측정의 % 배율 판독값
- 노란색 테스트 리드를 사용하는 20mA 시뮬레이션 시 최고 1200Ω 까지의 로드 드라이빙 기능
- Autoscan 의 조절식 스텝 및 주기
- 선형 램프 출력을 위한 조절식 분해능 및 시작
- 유입 전압 및 전류를 쉽게 포착하기 위한 1ms Peak Hold
- 0°C 보정을 선택할 수 있는 온도 측정
- 주파수, 듀티 사이클, 펄스 폭 측정
- 최소값, 최대값 및 평균값 동적 기록
- 수동 또는 자동 트리거 모드와 상대 모드를 포함하는 Data Hold
- 다이오드 및 가청 연속성 테스트
- SCPI 명령어를 포함한 양방향 광 컴퓨터 인터페이스
- 최고 50MΩ 까지 저항 측정
- 덮개를 닫은 상태에서 안전하고 정밀하고 빠른 교정
- IEC 61010-1 CAT II 150V 표준에 부합하는 50,000 카운트 정밀 True-RMS 디지털 미터기

표준 구매 품목

U1401A 휴대용 다기능 교정기 / 미터기와 함께 다음 품목이 모두 들어있는지 확인합니다.

- 보호용 케이스
- 충전지팩 (1.2V NiMH AA x 8)
- 휴대용 다기능 교정기 / 미터기용 전원 코드 및 AC 전원 어댑터
- 교정기 및 미터기 표준 테스트 리드 키트
- 운반용 가방
- mA 시뮬레이션을 위한 노란색 테스트 리드
- 교정 증명서
- 매뉴얼과 어플리케이션 소프트웨어가 들어있는 CD
- 빠른 시작 설명서 책자: 영어본 + 현지어본

빠진 품목이 있으면 가까운 Agilent 테크놀로지스 영업소나 서비 스 센터로 연락하십시오 .

1 시작하기

액세서리 목록

표 1-1 액세서리 목록

유형	Agilent 제품 번호	설명
표준		보호용 케이스
		충전지팩 (1.2V NiMH AA x 8)
		휴대용 다기능 교정기 / 미터기용 AC 전원 어댑터
		전원 코드 (국가마다 다름)
		운반용 가방
		교정기 및 미터기 표준 테스트 리드 키트
		mA 시뮬레이션을 위한 노란색 테스트 리드
		교정 증명서
		제품 참조 CD
		빠른 시작 설명서 책자 : 영어본 + 현지어본
옵션	U1186A	K 타입 열전쌍 입력 어댑터 및 프로브 번들
	U1184A	K 타입 열전쌍 입력 어댑터
	U1181A	K 타입 치환 프로브
	U1182A	산업용 표면 프로브
	U1183A	공기 프로브
	U1160A	표준 테스트 리드 키트
	U1161A	확장형 테스트 리드 키트
	U1162A	악어 클립
	U5481A	IR-USB 케이블

제품 개요

슬라이드 스위치

슬라이드 스위치는 다음과 같은 위치로 설정합니다.

- Charge: 배터리를 충전할 때 이 위치를 선택합니다 . 함께 들어 있는 AC 어댑터를 사용해 계측기를 충전합니다 .
- M: 측정 기능만 활성화할 경우에 이 위치를 선택합니다.
- M/S: 측정과 소스 기능을 모두 활성화할 때 이 위치를 선택합니다.

그림 1-1 슬라이드 스위치

표1-2 슬라이드 스위치 기능

번호	설명	기능
1	외장형 AC 어댑 터 잭	외장형 AC 어댑터를 연결해 전원을 공급하 거나 배터리를 충전할 수 있습니다 .
2	CHARGE	외장형 AC 어댑터로 배터리를 충전합니다.
3	М	측정 기능만 활성화합니다 .
4	M/S	측정 기능과 소스 기능을 모두 활성화합니다 .

· · ·			
	번호	설명	기능
	5	슬라이드 스위치	_
	6	충전 표시	충전 프로세스가 진행중임을 나타냅니다 .
			녹색 : 완전 충전 됨
			빨간색 : 충전 중

표 1-2 슬라이드 스위치 기능 (계속)

전면판 개요

그림 1-2 전면판

회전 스위치 개요

U1401A 를 켜기 전에 슬라이드 스위치를 M 또는 M/S 위치로 설정 합니다. U1401A 를 켜려면 회전 스위치를 원하는 기능으로 돌립니 다. 입력과 출력 기능이 함께 선택됩니다. 바깥쪽 원은 *출력(소스)* 기능을 나타내고 안쪽 원은 *입력(미터기*) 기능을 나타냅니다.

그림 1-3 회전 스위치

표 1-3	회전 스위치 위치와 각 위치의 기능

	설명 / 기능	
번호	입력 (흰색)	출력 (노란색)
1	OFF	_
2	DC, AC 또는 AC+DC 전압 측정	• 사각파 출력 • 정전류 : ±25mA • 정전압 : ±1.5V, ±15V
3	DC, AC 또는 AC+DC mV 측정 또는 온도 측정	정전압 : ±1.5V, ±15V
4	저항 측정 및 연속성 테스트	정전압 : ±1.5V, ±15V

	설명 / 기능	
번호	입력(흰색)	출력 (노란색)
5	다이오드 및 연속성 테스트	정전류 : ±25mA
6	DC, AC 또는 AC+DC mA 촉정 : 50mA 또는 500mA	• 정전압 : ±1.5V, ±15V • 정전류 : ±25mA • 사각파 출력

표 1-3 회전 스위치 위치와 각 위치의 기능 (계속)

키패드 개요

각 키의 동작이 아래에 설명되어 있습니다. 디스플레이에 관련 표 시 기호가 나타나고 키를 누를 때 신호음이 울립니다. 회전 스위치 를 다른 위치로 돌리면 현재 키 조작이 초기화됩니다.

그림 1-4 키패드기능

그림 1-5 키패드 이동 기능

표1-4 키패드기능

번호	ЭІ	1 초 미만으로 누를 때의 기능	1 초가 넘게 누를 때의 기능
1	AC/DC	DC, AC, AC+DC 중 하나를 선택합니다 .	V 및 mA 측정용 피크 홀드 On 또는 Off 간 전환합니다 .
2	HOLD	Data Hold <i>모드를 활성화할 경우 :</i> 현재 측정값을 고정합니다 . 다시 누르면 다음 측정 값으로 바뀝니다 .	Data Hold 모드를 종료합니다 . ^[1]
		<i>Refresh Hold 모드를 활성화할 경우 :</i> Refresh Hold 모드로 들어가거나 종료합니다 .	_
	MAX MIN ^[2]	MAX, MIN, AVG 및 동적 기록 모드에서의 현재 판독값 (MAX AVG MIN) 간에 전환합 니다 .	동적 기록 모드로 들어가거나 종료합니다 . ^[1]
3	REL	표시된 값을 이후 측정값으로부터 차감해 야 할 기준으로 저장합니다 .	mV 와 온도 테스트 간에 상호 전환합니다.
4	RANGE	측정 범위를 변경합니다 .	자동범위를 설정합니다 .
5	DUAL	기본 및 보조 디스플레이의 여러 조합을 순서대로 표시합니다 .	-
6	Hz	기본 디스플레이에서 주파수 (Hz), 듀티사이 클 (%), 펄스 폭 (ms) 중 하나를 선택합니다 .	선택 기능을 종료합니다 .

표 1-4 키패드 기능 (계속)

번호	ЭI	1 초 미만으로 누를 때의 기능	1 초가 넘게 누를 때의 기능
7	SHIFT	다른 키의 변경 기능을 활성화 및 비활성 화합니다 .	백라이트 켜짐과 꺼짐을 반복합니다 .
8 ^[3]	MODE	정전압 / 정전류 , 오토스캔 및 오토램프의 출력 모드를 선택합니다 . 사각파 출력의 주파수 (Hz), 듀티사이클 (%), 펄스 폭 (ms), 레벨 조절을 선택합니다 .	조절 모드로 들어갑니다 (오토스캔 및 오 토램프 출력용).
9 ^[3]	• •	조절할 자리값이나 극성을 선택합니다 . 선택한 자리값 / 극성이 보조 디스플레이 에서 깜박입니다 .	_
10 ^[3]	• •	자리값이나 극성을 조절합니다 . 이 키를 눌러 선택한 자리값을 조절하거나 출력 극성을 바꿉니다 .	—
11 ^[3]	OUTPUT	출력 상태를 켜짐과 꺼짐 사이에서 반복합니 다 . [0UT] 은 신호가 생성 중임을 [SBY] 는 출 력이 비활성화 되었음을 각각 나타냅니다 .	

- [1] HOLD 키를 1 초 이상 누르고 있을 경우, 기능은 현재 계측기의 상태에 따라 달라집니다.계측기가 현재 Data Hold 모드로 되어있을 경우, 이 키를 1 초 이상 누르고 있으면 Data Hold 모드가 종료되고, 계측기가 Data Hold 모드로 되어있지 않은 경우, 이 키를 1 초 이상 누르고 있으면 동적 기록 모드로 들어가거나 종료합니다.
- [2] 계측기가 동적 기록 모드로 되어있을 경우에만 가능합니다.

^[3] 기능 변경

기능 변경

모든 키 (SHIFT 키 제외) 마다 변경 기능이 있습니다. 이 변경 기능 에 액세스하려면 먼저 SHIFT 를 눌러야 합니다. SHIFT 를 누르면 SHIFT 키를 다시 누를 때까지 변경 기능이 계속 활성화 됩니다 (LCD 디스플레이에 (SHIFT) 표시).

이 매뉴얼에서는 SHIFT 키에 대한 명시적 언급 없이 변경 기능을 포 함하는 지침을 제공합니다.그러한 지침 목록과 해야할 사항에 대 해서는 12 페이지 표 1-5 를 참조하십시오.

지침	필요한 조치
MODE 를 누릅니다.	SHIFT ^[1] 를 누르고 , (AC/DC) 를 누릅니다 .
◀ 누름	SHIFT ^[1] 를 누르고 , (HOLD)를 누릅니다 .
▶ 누름	SHIFT ^[1] 를 누르고 , (ℝL) 을 누릅니다 .
▲ 누름	SHIFT ^[1] 를 누르고 , (RANGE) 를 누릅니다 .
▼ 누름	SHIFT ^[1] 를 누르고 , OUAL) 을 누릅니다 .
OUTPUT 을 누릅니다 .	SHIFT ^[1] 를 누르고 , (Hz) 를 누릅니다 .

표1-5 변경 기능이 포함된 지침

[1] 변경 기능이 활성화 되어있지 않은 경우 .

디스플레이 개요

전체 화면 (조명이 켜진 모든 부분 포함)으로 보려면 회전 스위치 를 OFF 에서 그 외 위치로 돌리면서 (HOLD)를 누릅니다. 전체 디스 플레이 표시를 완료했으면 아무 버튼이나 눌러 회전 스위치 위치 에 따른 정상 기능을 재개합니다.

그러면 자동 전원 꺼짐 (**@OFF**) 기능이 활성화 되어 있을 경우 계 측기가 절전 모드로 들어갑니다. 계측기를 다시 가동시키려면 다 음 절차를 따릅니다.

- 1 회전 스위치 (노브)를 OFF 위치로 돌립니다.
- 2 그런 다음 회전 스위치를 사각파 출력 이외의 위치로 돌려 아무 키나 누릅니다.

그림 1-6 전체 표시

1 시작하기

표1-6 표시 기호 설명

LCD 디스플레이 표시 기호	설명
Remote	원격 제어
SCAN	스캔 출력
(m)	램프 출력
SHIFT	변경 기능 활성화
AUTO	자동 범위
\triangle	상대 모드
Ē	배터리 부족 표시
0 OFF	자동 꺼짐 활성화
ллл	사각파 출력
Hz % ms <u>Level</u>	사각파 출력의 주파수 (Hz), 듀티사이클 (%), 펄스 폭 (ms) 및 레벨
\bigotimes	정전류 출력
©	정전압 출력
표 1-6 표시 기호 설명 (계속)

LCD 디스플레이 표시 기호	설명
u k u e r s	온도 테스트를 위한 열전쌍 유형 . U1401A 는 K 타입 열전쌍만 지원합니다 .
OUT SBY	OUT 출력은 활성화되고 SBY 출력은 비활성화 됨
± 88888	입출력을 표시하는 보조 디스플레이
°C°FkHz % ⊈20 0⊒20 ମୁମ AV sec	보조 디스플레이의 입출력 단위
→ + ··))	다이오드 또는 가청 연속성
••))	저항에 대한 가청 연속성
DH	트리거 (수동) 홀드
MAXAVGMIN	동적 기록 모드 : 기본 디스플레이 상의 현재 값
МАХ	동적 기록 모드 : 기본 디스플레이 상의 최대값
AVG	동적 기록 모드 : 기본 디스플레이 상의 평균값
MIN	동적 기록 모드 : 기본 디스플레이 상의 최소값
ACDC	교류 / 직류
- 88888	입력용 기본 디스플레이

표 1-6 표시 기호 설명 (계속)

LCD 디스플레이 표시 기호	설명
ິC % ິF ກຼາ AV sec Mk Ω Hz	기본 디스플레이의 입력 단위
£₹	사각파 출력 정극성 🖌 또는 부극성 군 트리거 기울기
ł	펄스폭 (ms) 및 듀티 사이클 (%) 측정을 위한 양의 기울기
f	펄스폭 (ms) 및 듀티 사이클 (%) 측정을 위한 음의 기울기
0-20 4-20	0mA~20mA 및 4mA~20mA 전류 측정의 비율 스케일
0°C	주변 온도 보정 불가

단자 개요

경고

계측기 손상을 피하려면 정격 입력 제한을 초과하지 마십시오 .

그림 1-7 단자

표1-7 단자설명

번호	설명	기능
1	OUTPUT(노란색)	정전압 , 정전류 및 사각파 출력 기능일 경우
2	INPUT (회색 - 흰색)	전압 , 전류 및 저항 측정과 다이 오드 및 가청 연속성 테스트일 경우

계측기에 단자가 4개 있습니다. 입력 기능용 단자 2개는 표 1-8 에서 지정한 제한을 기준으로 과부하로부터 보호됩니다. 다른 두 단자는 출력 기능용이며 DC 30V 과부하로부터 보호됩니다.

회전 스위치 위치	입력 단자	과부하 보호
AC/DC 전압 범위 : 5V ~ 250V	+ 및 -	250Vrms
AC/DC 전압 범위 : 50mV ~ 500mV		
저항 (Ω)		
다이오드(• ·)))		
온		
AC/DC 전류 범위 : 50mA ~ 500mA		250V/630mA, 급속 작동 식 퓨즈

표 1-8 입력 단자의 과부하 보호

뒷면 개요

그림 1-8 후면판

Hz 키를 포함한 디스플레이 선택 항목

주파수 측정 기능을 통해 중성선에 고조파 전류가 존재하는지 감 지하고 이 중성류가 불균형 위상 또는 비선형 부하의 결과인지를 알아낼 수 있습니다. (叱)을 눌러 전류 또는 전압 측정을 위해 주 파수 측정 모드로 들어갑니다. 전압 또는 전류 값은 보조 디스플레 이에, 주파수 값은 기본 디스플레이에 각각 표시됩니다. 이 키를 다시 누르면 주파수 (Hz), 듀티사이클 (%), 펄스 폭 (ms) 이 순서대 로 표시됩니다. 이를 통해 실시간 전압 또는 전류와 주파수, 듀티 사이클 또는 펄스 폭을 동시에 모니터링할 수 있습니다.

(hz)를 1 초 이상 누르고 있으면 기본 디스플레이가 전압 또는 전 류 측정 값으로 되돌아 갑니다.

표 1-9 Hz 키를 포함한 측정 기능과 해당 디스플레이 선택

측정 기능	기본 디스플레이	보조 디스플레이
AC 전 압	주파수 (Hz)	AC 전압
	듀티 사이클 (%)	
	펄스 폭 (ms)	
DC 전압	주파수 (Hz)	DC 전압
	듀티 사이클 (%)	
	펄스 폭 (ms)	
AC+DC 전압	주파수 (Hz)	AC+DC 전압
	듀티 사이클 (%)	
	펄스 폭 (ms)	
AC 전류	주파수 (Hz)	AC전류
	듀티 사이클 (%)	
	펄스 폭 (ms)	
DC 전류	주파수 (Hz)	DC전류
	듀티 사이클 (%)	
	펄스 폭 (ms)	

표 1- 9	Hz 키를 포함한 측정 기능과 해당 디스플레이 선택 (2	계속)	
---------------	----------------------------------	-----	--

측정 기능	기본 디스플레이	보조 디스플레이
AC+DC 전류	주파수 (Hz)	AC+DC 전류
	듀티 사이클 (%)	
	펄스 폭 (ms)	
비율 스케일로 표시한 전류	주파수 (Hz)	비율 스케일로 표시한 전류
(0mA ~ 20mA 또는 4mA~20mA)	듀티 사이클 (%)	(0mA ~ 20mA 또는 4mA~ 20mA)
	펄스 폭 (ms)	

DUAL 키를 포함한 디스플레이 선택 항목

□ □ 월 누르면 듀얼 디스플레이 기능이 활성화 되어, 측정 신호 의 별도 파라미터 두 개가 기본 디스플레이와 보조 디스플레이에 동시에 표시됩니다. 동적 기록 또는 트리거 모드에서는 듀얼 디스 플레이 기능을 사용할 수 없습니다.표 1-10 을 참조하십시오.

표 1-10 DUAL 키를 포함한 측정 기능과 해당 디스플레이 선택

측정 기능	기본 디스플레이	보조 디스플레이	
AC 전압	AC 전압 Hz (AC 커플링)		
DC 전압	DC 전압	Hz (DC 커플링)	
AC+DC 전압	AC+DC 전압	Hz (AC 커플링)	
DC 전류	DC 전류	Hz (DC 커플링)	
AC 전류	AC 전류	Hz (AC 커플링)	
AC+DC 전류	AC+DC 전류	Hz (AC 커플링)	
비율 스케일로 표시한 전류 (0mA ~ 20mA 또는 4mA~ 20mA)	비율 스케일로 표시한 전류 (0mA ~ 20mA 또는 4mA~ 20mA)	Hz (DC 커플링)	
온도	섭씨 (°C) 화씨 (°F)		
	화씨 (°F)	섭 씨 (° C)	

원격 통신

U1401A 에는 양방향(전이중) 통신 기능이 있어서 계측기에서 PC 로 데이터를 전송하는 것이 매우 쉽습니다.

이 기능에 필요한 액세서리는 IR-USB 케이블 (옵션)과 함께 제공 되는 CD 에 포함된 어플리케이션 소프트웨어가 있습니다.

원격 통신을 통해 개인 컴퓨터와 통신하는 방법 :

- 1 사용중인 계측기와 개인 컴퓨터의 통신 파라미터를 설정합니다. 계측기 보 속도, 패리티, 데이터 비트 및 정지 비트의 기본 값은 각각 9600, n, 8, 1 입니다.
- 2 USB 드라이버와 Agilent 데이터 로거 소프트웨어가 컴퓨터에 설치되어 있는지 확인합니다.
- 3 케이블의 광쪽을 계측기의 통신 포트에 연결합니다. 텍스트쪽 은 위를 향해야 합니다. 24 페이지 그림 1-10 을 참조하십시오.
- 4 USB 케이블 단자의 다른쪽 끝을 개인 컴퓨터의 USB 포트에 연 결합니다.
- 5 데이터 전송 소프트웨어를 사용해 필요한 데이터를 검색합니다.
- 6 플랩을 눌러 계측기 통신 포트에서 케이블을 분리합니다. 25 페 이지 그림 1-11 을 참조하십시오.
- 7 IR-USB 케이블의 커넥터 커버를 벗겨내는 것은 좋지 않습니다. 하지만 경우에 따라 플랩을 눌러 케이블을 분리할 때에는 25 페 이지 그림 1-11 에서와 같이 단자 덮개가 잘못해서 벗겨질 수도 있습니다.이 덮개를 다시 덮으려면 덮개를 단자 위로 밀어 넣 기만 하면 됩니다.덮개의 텍스트가 단자 상단 케이스에 있는 텍스트와 같은 쪽에 있어야 합니다.덮개가 잘 장착되면 ' 찰칼 ' 소리가 납니다.

그림 1-11 IR-USB 케이블

U1401A 사용 및 서비스 설명서

U1401A 휴대용 다기능 교정기 / 미터기 사용 및 서비스 설명서

교정기 출력 작동

2

이 장에서는 U1401A 를 사용해 신호를 만드는 방법을 자세히 설명 합니다.

출력 활성화 및 비활성화

U1401A 는 동시에 신호를 만들면서 측정할 수 있습니다. OUTPUT 키를 누르면 대기 모드가 되어 U1401A 출력을 사용할 수 없게 됩니다. 이 키를 다시 누르면 출력이 다시 켜집니다.

출력이 대기 모드로 되어 있을 경우, OUT 표시 기호가 사라지고 그 대신 [SBY] 표시 기호가 나타납니다. 이는 교정기가 출력 생성을 중단했다는 의미입니다.

다음과 같은 경우에는 대기 모드가 자동으로 활성화 되기도 합니다.

- 출력 기능을 활성화한 상태에서 외부 신호를 출력 단자로 잘못 보낸 경우.
- 외부 전원 시스템이나 출력 단자의 노이즈 때문에 출력에 오류 신호가 발생한 경우. 예를 들어, 8000V 에서 ESD 를 수행할 경 우,계측기가 대기 모드로 바뀝니다.
- 정전압이나 사각파 출력 생성 시 과부하를 감지한 경우.
- 배터리가 부족할 경우. 이 상태에서는 출력 품질을 확인하고 또 다 른 경고 역할을 해 사용자에게 배터리 부족 사실을 알려줍니다.
- 슬라이드 스위치를 M(입력 전용)위치에 놓은 경우(이렇게 하는 것은 출력 기능을 사용하지 않을 때 배터리 전원을 보존하 기위함).

정전압 작동

U1401A 는 정전압 출력을 두 가지 범위 즉, ±1.5V 와 ±15V 로 생성 할 수 있습니다.

정전압 출력 기능을 선택하는 방법 :

- 1 회전 스위치를 ↔ (정전압 출력)위치 중 하나로 돌립니다.
- 2 SHIFT 를 눌러 키패드의 변경 작동에 액세스합니다. 디스플레 이에 (SHIFT) 표시 기호가 나타납니다.
- - 오토스캔이나 오토램프 모드와는 달리 디스플레이에서 정전 압 (CV) 작동을 나타내는 특별한 표시 기호는 없습니다.
- 4 계측기를 대기 모드로 놔둔 상태에서 (디스플레이에 SBY 표시 기호가 나타날 것입니다. 그렇지 않을 경우에는 OUTPUT 을 누 릅니다.) ◀ 및 ▶를 눌러 조절할 자리값을 선택한 다음 ▲ 및 ▼ 을 눌러 선택한 자리값을 조절함으로써 출력 진폭을 조 절할 수 있습니다.
- 5 OUTPUT 을 눌러 소스 출력을 시작합니다. 디스플레이에 OUT 표시 기호가 나타납니다.

정전류 작동

U1401A 는 ±25mA 범위에서 정전류 출력을 발생시킬 수 있습니다.

정전류 출력 기능을 선택하는 방법 :

- 1 회전 스위치를 🕢 (정전류 출력)위치 중 하나로 돌립니다.
- 2 SHIFT 를 눌러 키패드의 변경 작동에 액세스합니다. 디스플레 이에 (SHIFT) 표시 기호가 나타납니다.
- 3 MODE 를 눌러 ±25mA, SCAN ±25mA, ↓↓↓ ±25mA 출력 모드 를 차례로 확인합니다. 정출력 (또는 지속 출력. 오토스캔이나 오토램프 출력과는 다름. 여기에 대해서는 31 페이지의 " 메모 리 생성 " 에서 설명함) 으로 ±25mA 출력 모드를 선택합니다.
 - 오토스캔이나 오토램프 모드와는 달리 디스플레이에서 정전 류 (CC) 작동을 나타내는 특별한 표시 기호는 없습니다.
- 4 계측기를 대기 모드로 놔둔 상태에서 (디스플레이에 SBY 표시 기호가 나타날 것입니다. 그렇지 않을 경우에는 OUTPUT 을 누 릅니다.) ◀ 및 ▶를 눌러 조절할 자리값을 선택한 다음 ▲ 및 ▼ 을 눌러 선택한 자리값을 조절함으로써 출력 진폭을 조 절할 수 있습니다.
- 5 OUTPUT 을 눌러 소스 출력을 시작합니다. 디스플레이에 ^{OUT} 표시 기호가 나타납니다.

메모리 생성

정전압 및 정전류 출력과 관련해 U1401A에서는 추가로 유용한 두 가지 기능을 사용할 수 있습니다. 하나는 *오토스캔* 출력이며 정전 압이나 정전류의 스텝을 최대 16 가지나 생성할 수 있고 각각 자체 사용자 정의 진폭 및 주기를 갖습니다. 다른 하나는 *오토램프* 출력 으로서 선형 시뮬레이션을 위해 이중 기울기와 스텝 개수를 사용 자 정의할 수 있습니다.

오토스캔 출력

오토스캔 출력을 설정하는 방법 :

- 2 SHIFT 를 눌러 키패드의 변경 작동에 액세스합니다. 디스플레 이에 (SHIFT) 표시 기호가 나타납니다.
- 3 아래 지침 중 하나를 따릅니다.
 - 전압 출력일 경우, MODE 를 눌러 ±1.5V, ±15V, \$CAN ±1.5V, \$CAN ±

- 4 필요한 (SCAN) 기능을 선택한 다음 ◀ 또는 ▶를 눌러 Continuous, Cycle, Step 이 세 모드 중 하나를 선택합니다. 그 러면 보조 디스플레이에 Cont, CyCLE 또는 StEP 이 각각 나타납 니다 (34 페이지 그림 2-1).
 - Continuous 모드 (Cont): 이 모드는 메모리에서 정의한 진폭과 주기에 따라 신호를 출력하며, 스텝 1 부터 시작해 주기가 "00" 초가 되는 스텝까지 진행하며 그 후에는 다시 스텝 1 부 터 시작합니다. 예를 들어, 기본 설정 (33 페이지 표 2-1) 에 따라 출력 신호가 스텝 1 부터 11 까지 따른 다음 스텝 12 의 주기는 "00" 초이므로 다시 스텝 1 로 돌아갑니다.
 - Cycle 모드 (CyCLE): 이 모드는 Continuous 모드와 비슷하지 만 출력이 전체 스텝을 1 주기만 진행합니다. 출력은 메모리 에서 정의한 진폭과 주기에 따라 달라지며 스텝은 1 부터 주 기가 "00" 초인 스텝까지 진행됩니다. 그런 다음 0 의 주기 스 텝에 앞서 마지막 스텝의 진폭에서 출력 레벨이 유지됩니다. 예를 들어, 기본 설정에 따라 출력 신호가 스텝 1 부터 11 까 지 따른 다음 스텝 11 에서 유지됩니다.
 - Step 모드 (StEP): 단계별 출력 모드입니다. 출력하려는 사용 자 정의 신호 스텝을 직접 선택할 수 있습니다. 이 모드를 선 택한 다음 ▲ 또는 ▼ 을 눌러 출력할 스텝을 선택합니다. 출력으로 그 다음 스텝을 선택할 때까지 출력 진폭이 유지됩 니다.
- 5 OUTPUT 을 눌러 소스 출력을 시작합니다. 디스플레이에 OUT 표시 기호가 나타납니다.

Continuous 및 Cycle 출력은 항상 스텝 1 부터 시작합니다. 스텝 1 의 주기가 "00" 초라면 출력 레벨이 스텝 1 의 진폭으로 설정되며 출력 상태는 [SBY] 로 설정됩니다. 연속 또는 주기 모드에서 신호 출 력을 멈출 경우, 다음 출력 스텝은 스텝 1 부터 시작합니다.

표	2-1	오토스캔	출력의	기본	설정
---	-----	------	-----	----	----

모드	SCAN ±1	SCAN ±1.5000V		SCAN)±15.000V		5.000mA
단계	진폭	주기	진폭	주기	진폭	주기
1	+1.5000V	02 초	+15.000V	02 초	+00.000mA	02 초
2	+1.2000V	02 초	+12.000V	02 초	+04.000mA	02 초
3	+0.9000V	02 초	+09.000V	02 초	+08.000mA	02 초
4	+0.6000V	02 초	+06.000V	02 초	+12.000mA	02 초
5	+0.3000V	02 초	+03.000V	02 초	+16.000mA	02 초
6	+0.0000V	02 초	+00.000V	02 초	+20.000mA	02 초
7	-0.3000V	02 초	-03.000V	02 초	+16.000mA	02 초
8	-0.6000V	02 초	-06.000V	02 초	+12.000mA	02 초
9	-0.9000V	02 초	-09.000V	02 초	+08.000mA	02 초
10	-1.2000V	02 초	-12.000V	02 초	+04.000mA	02 초
11	-1.5000V	02 초	-15.000V	02 초	+00.000mA	02 초
12	+0.0000V	00 초	+00.000V	00 초	+04.000mA	00 초
13	+0.0000V	00 초	+00.000V	00 초	+08.000mA	00 초
14	+0.0000V	00 초	+00.000V	00 초	+12.000mA	00 초
15	-1.5000V	00 초	-15.000V	00 초	+16.000mA	00 초
16	+0.0000V	00 초	+00.000V	00 초	+20.000mA	00 초

그림 2-1 오토스캔 출력 모드 선택

그림 2-2 일반 오토스캔 출력의 예

메모리에서 오토스캔 파라미터 정의

MODE 를 1 초 이상 누르고 있으면 오토스캔 조절 모드로 들어갑니다. 총 16 가지 스텝이 있으며 주기와 진폭은 따로 정의합니다.

계측기가 오토스캔 조절 모드로 되어 있을 경우, 보조 디스플레이 에 진폭이 표시됩니다. 기본 디스플레이의 첫 두 자리는 조절 중인 스텝을 나타냅니다. 기본 디스플레이의 마지막 두 자리는 주기를 나타냅니다.

- **1** MODE 를 눌러 스텝, 주기, 진폭 조절을 순서대로 확인합니다. 디스플레이에서 조절할 자리값이 깜박입니다.
 - · 진폭 조절일 경우, ◀ 및 ▶ 를 눌러 조절할 자리값을 선택 한 다음 ▲ 및 ▼ 를 눌러 선택한 자리값을 조절합니다. 진 폭은 선택한 출력 범위 안에서 아무 값으로나 설정할 수 있습 니다(정전압 출력일 경우에는 ±1.5V 또는 ±15V 이고 정전류 출력일 경우에는 ±25mA 임).
 - 주기 조절일 경우, < 및 ▶ 를 눌러 조절할 자리값을 선택 한 다음 ▲ 및 ▼ 를 눌러 선택한 자리값을 조절합니다. 주 기는 0 초 ~99 초 범위 안에서 설정할 수 있습니다.
 - ▶ 를 1 초 이상 누르면 현재 스텝의 주기와 진폭이 직접 0 으 로 재설정됩니다.

2 OUTPUT 을 눌러 설정을 저장합니다.

그림 2-3 오토스캔 출력 정의

오토램프 출력

오토램프 출력을 설정하는 방법 :

- 1 회전 스위치를 🕢 또는 🗘 위치 중 하나로 돌립니다.
- 2 SHIFT 를 눌러 키패드의 변경 작동에 액세스합니다. 디스플레 이에 (SHIFT) 표시 기호가 나타납니다.
- 3 아래 지침 중 하나를 따릅니다.
 - 전압 출력일 경우, MODE 를 눌러 ±1.5V, ±15V, SCAN ±1.5V, SCAN ±1.5V, SCAN ±1.5V, (111) ±1.5V, (111) ±15V 출력 모드를 순서 대로 확인합니다. 필요한 전압 범위에 따라 두 가지 (111) (오토램프) 출력 모드 중 하나를 선택합니다.
 - 전류 출력일 경우, MODE 를 눌러 ±25mA, SCAN ±25mA, ↓ ±25mA 출력 모드를 차례로 확인합니다. ↓ ▲ 출력 모드를 선택합니다.

표 2-2 오토램프 출력의 기본 설정

모드	.⊑		±15.000V		±25.000mA	
위치	진폭	분해능	진폭	분해능	진폭	분해능
시작	-1.5000V	015 스텝	-15.000V	015 스텝	-25.000mA	025 스텝
끝	+1.5000V	015 스텝	+15.000V	015 스텝	+25.000mA	025 스텝

- 4 필요한 //// 기능을 선택한 다음 ◀ 또는 ▶를 눌러 Continuous 나 Cycle 중 하나를 선택합니다. 그러면 보조 디스 플레이에 Cont 또는 CyCLE 이 각각 나타납니다 (38 페이지 그 림 2-4).

 - Cycle 모드 (CyCLE): 이 모드에서는 램프 신호의 1 주기만 발생 합니다. 메모리에서 정의한 진폭과 스텝 개수에 따라 신호가 발생하는데, 각 스텝은 약 0.33 초 정도 걸리며, 그 후에는 램 프 신호의 최종 값에서 출력 진폭이 유지됩니다.
- 5 OUTPUT 을 눌러 소스 출력을 시작합니다. 디스플레이에 OUT 표시 기호가 나타납니다.

그림 2-4 오토램프 출력 모드 선택

그림 2-5 램프 출력

메모리에서 오토램프 파라미터 정의

MODE 를 1 초 이상 누르고 있으면 오토램프 조절 모드로 들어갑니다. 램프 기능은 이중 기울기 출력입니다. 시작 위치와 끝 위치 또는 끝 위치와 시작 위치 사이에 있는 스텝 개수를 조절할 수 있고 시작 위치와 끝 위치의 진폭도 조절할 수 있습니다.

U1401A 이 오토램프 조절 모드로 되어 있을 경우, 보조 디스플레 이에는 시작 또는 끝 위치의 진폭이 표시됩니다. 기본 디스플레의 왼쪽 첫 번째 자리는 시작 또는 끝 위치를 나타냅니다. 기본 디스 플레이의 마지막 세 자리는 스텝 개수 (시작부터 끝까지의 스텝 개수)를 나타냅니다.

- 1 MODE 를 눌러 위치 (시작 또는 끝), 스텝 개수, 진폭 조절을 순 서대로 확인합니다. 디스플레이에서 조절할 자리값이 깜박입 니다.
 - · 진폭 조절일 경우, ◀ 및 ▶ 를 눌러 조절할 자리값을 선택 한 다음 ▲ 및 ▼ 를 눌러 선택한 자리값을 조절합니다. 진 폭은 선택한 출력 범위 안에서 아무 값으로나 설정할 수 있습 니다(정전압 출력일 경우에는 ±1.5V 또는 ±15V 이고 정전류 출력일 경우에는 ±25mA 임).
 - 스텝 개수 조절일 경우, < 및 > 를 눌러 조절할 자리값을 선택한 다음 ▲ 및 ▼ 를 눌러 선택한 자리값을 조절합니다.
 스텝 개수는 0~999 범위 안에서 설정할 수 있습니다.
 - ▶ 를 1 초 이상 누르면 현재 스텝의 주기와 진폭이 직접 0 으 로 재설정됩니다.
- 2 OUTPUT 을 눌러 설정을 저장합니다.

그림 2-6 오토램프 출력 정의

사각파 출력

사각파는 PWN(Pulse Width Modulation) 출력을 발생시키거나 동 기 클럭 소스 (전송 속도 발생기)를 제공하는 데 사용할 수 있습 니다.또한 이 기능을 사용하여 유량 미터 디스플레이, 카운터, 타 코미터, 오실로스코프, 주파수 컨버터, 주파수 변환기, 주파수 송 신기 및 기타 주파수 입력 장치를 검사하고 교정할 수 있습니다.

사각파 출력의 주파수, 진폭, 듀티사이클, 펄스 폭을 모두 조절할 수 있습니다.

사각파 출력 기능을 선택하는 방법 :

- 1 회전 스위치를 ♫♫♫ 위치로 돌립니다.
- 2 SHIFT 를 눌러 키패드의 변경 작동에 액세스합니다. 디스플레 이에 (SHIFT) 표시 기호가 나타납니다.
 - 이 파라미터들의 기본 설정은 각각 150Hz (주파수), 50.00% (듀티사이클), 3.3333ms (펄스 폭), +5V (진폭)입니다. 그림 2-7 을 참조하십시오.
- 3 OUTPUT 을 눌러 사각파 신호를 출력합니다.

표 2-3 사용 가능한 주파수

주파수 (Hz) 0.5, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80, 100, 120, 150, 200, 240, 300, 400, 480, 600, 800, 1200, 1600, 2400, 4800

28 가지 주파수 중에서 하나를 선택할 수 있습니다 (표 2-3 참조). 주파수 변경 방법 :

- 1 SHIFT 를 눌러 키패드의 변경 작동에 액세스합니다. 디스플레 이에 (SHIFT) 표시 기호가 나타납니다.
- 2 MODE 를 눌러 주파수 조절을 선택합니다. 디스플레이에 (H2) 표시 기호가 나타납니다.
- 3 ▲ 또는 ▼ 을 눌러 주파수를 선택합니다.
- 4 OUTPUT 을 눌러 신호를 출력합니다.

듀티사이클은 간격이 동일한 256 가지 스텝이 있으며 각 스텝은 0.390625% 에 해당합니다.이 값은 1~255 (0.390625% ~ 99.609375%) 범위 안에서 설정할 수 있습니다. 하지만 디스플레 이는 가장 가까운 0.01% 까지만 나타낼 수 있습니다.

듀티사이클 조절 방법:

1 MODE 를 눌러 듀티사이클 조절을 선택합니다. 디스플레이에

(%) 표시 기호가 나타납니다.

2 ▲ 또는 ▼ 를 눌러 듀티 사이클을 조정합니다.

펄스 폭의 스텝은 간격이 동일한 256가지이며, 각 스텝은 1/(256 × 주파수)에 해당합니다.이 값은 1~255 범위 안에서 설정할 수 있 습니다.

펄스 폭 조절 방법 :

- 1 MODE 를 눌러 펄스 폭 조절을 선택합니다. 디스플레이에 (ms) 표시 기호가 나타납니다.
- 2 ▲ 또는 ▼ 를 눌러 펄스 폭을 조정합니다.

진폭은 +5V, ±5V, +12V, ±12V 중 하나로 설정할 수 있습니다.

진폭 조절 방법:

- 1 MODE 를 눌러 진폭 조절을 선택합니다. 디스플레이에 Level 표 시 기호가 나타납니다.
- 2 ▲ 또는 ▼ 를 눌러 진폭을 선택합니다.

그림 2-7 사각파 출력의 파라미터 선택

U1401A 휴대용 다기능 교정기 / 미터기 사용 및 서비스 설명서

측정 수행

3

전압측정 46 DC 전압 측정 46 AC 전압 측정 48 전류 측정 49 DCmA 측정 49 DC mA 측정의 비율 스케일 50 온도 측정 51 저항 측정 및 연속성 테스트 54 측정중경보및경고 56 전압 측정 시 과부하 경고 56 수학 연산 57 동적 기록 57 상대(제로) 60 트리거링 작동 61 Data Hold (수동트리거) 61 Refresh Hold (자동트리거) 62 1ms Peak Hold 63

이 장에서는 U1401A를 사용해 측정하는 방법을 자세히 설명합니다.

Agilent Technologies

3 측정 수행

전압 측정

U1401A 는 True-RMS AC 측정을 수행하는데 어떠한 DC 오프셋 없이 사각파에 대해 정확한 측정을 합니다.

경고 측정을 하려면 먼저 특정 측정에 맞게 단자를 올바로 연결했는지 확인해야 합니다 . U1401A 가 손상되지 않게 하려면 정격 입력 제한 을 초과하지 마십시오 .

DC 전압 측정

- 1 회전 스위치를 ≂V 로 돌립니다.
- 2 (AC/DC) 를 눌러 DC 전압 측정을 선택합니다.
- **3** 빨간색과 검정색 테스트 리드를 각각 양의 입력 단자와 음의 입 력 단자에 연결합니다 (47 페이지 그림 3-1).
- 4 테스트 포인트를 프로빙하고 디스플레이를 읽습니다.

그림 3-1 DC 전압 측정

AC 전압 측정

- 1 회전 스위치를 ∼∨로 돌립니다.
- 2 (AC/DC) 를 눌러 AC 전압 측정을 선택합니다.
- **3** 빨간색과 검정색 테스트 리드를 각각 양의 입력 단자와 음의 입 력 단자에 연결합니다 (그림 3-2).
- 4 테스트 포인트를 프로빙하고 디스플레이를 읽습니다.

그림 3-2 AC 전압 측정

전류 측정

DC mA 측정

- 1 회전 스위치를 ∼ mA로 돌립니다.
- 2 (AC/DC) 를 눌러 DC 전류 측정을 선택합니다.
- **3** 빨간색과 검정색 테스트 리드를 각각 양의 입력 단자와 음의 입 력 단자에 연결합니다.
- 4 테스트 포인트를 회로와 직렬로 프로빙하고 디스플레이를 읽습 니다.(그림 3-3 참조)

그림 3-3 DC 전류 (mA) 측정

DC mA 측정의 비율 스케일

4mA~20mA 또는 0mA~20mA 에 대한 비율 스케일은 측정한 DC mA 값을 기준으로 계산합니다.

- 1 Setup 모드에서 필요한 범위 (4mA~20mA 또는 0mA~20mA) 를 선택합니다 (4 장, "비율 배율 판독값 설정 " 참조).
- 2 회전 스위치를 ∼mA로 돌립니다.
- 3 (AC/DC) 를 눌러 DC mA 측정을 위한 비율 스케일 표시를 선택합니다.
- 4 빨간색과 검정색 테스트 리드를 각각 양의 입력 단자와 음의 입 력 단자에 연결합니다.
- 5 테스트 포인트를 회로와 직렬로 프로빙하고 디스플레이를 읽습 니다.그림 3-3 의 삽입 디스플레이는 4mA~20mA 범위에서 20mA 를 나타내는 비율 스케일 판독값을 표시합니다.
온도 측정

주의

열전쌍 리드를 심하게 구부리지 마십시오. 일정 시간 이상 반복해서 구부리면 리드가 끊어질 수도 있습니다 .

비드 타입 열전쌍 프로브는 Teflon 호환 환경에서 -40°C~204°C 온도를 측정하기에 적합합니다.이 온도 범위보다 높으면 프로브 가 독성 가스를 방출할 수 있습니다.이 열전쌍 프로브를 액체에 적시지 마십시오. 최상의 결과를 위해,특정 어플리케이션용으로 제작한 열전쌍 프로브를 사용하는데, 예를 들어, 액제나 젤일 경 우에는 담금형 프로브를, 기체 측정 시에는 공기 프로브를 각각 사 용합니다.다음 측정 기법을 준수하십시오.

- 측정할 면을 깨끗이 닦고 프로브가 이 표면에 잘 닿는지 확인합
 니다. 공급되는 전원을 차단해야 합니다.
- 상온보다 높은 온도를 측정할 때에는 가장 높은 온도 판독값을 얻을 때까지 표면을 따라 열전쌍을 움직입니다.
- 상온보다 낮은 온도를 측정할 때에는 가장 낮은 온도 판독값을 얻을 때까지 표면을 따라 열전쌍을 움직입니다.
- 언제나 슬라이드 스위치는 M 위치 (미터기 작동 시에만)로 설 정합니다.미니 열 프로브가 있는 비보상 전달 어댑터를 사용하 기 때문에 계측기를 1 시간 이상 작동 환경에 둡니다. 열선이 바 나나 또는 랜턴 단자로 침투하는 열전쌍 프로브 종류를 사용할 경우에는 계측기를 작동 환경에 15 분 이상 놔두어야 합니다.
- 빠른 측정을 위해 0°C 보상을 사용해 열전쌍 센서의 온도 변화 를 확인합니다. 0°C 보상 때문에 즉시 상대 온도를 측정하는 것 이 가능합니다.

온도를 측정하려면 다음 절차를 따릅니다.

- 1 슬라이드 스위치를 M 위치로 설정해 출력을 비활성화합니다.
- 2 회전 스위치를 **∼mV** 위치로 돌립니다.
- 3 (℡)을 1초 이상 눌러 온도 측정을 선택합니다.
- 4 열전쌍 어댑터 (열전쌍 프로브가 연결되어 있음)를 양의 입력 단자와 음의 입력 단자에 연결합니다 (53 페이지 그림 3-4).
- 5 열전쌍 프로브를 측정할 표면에 갖다 댑니다.
- 6 디스플레이를 읽습니다.

항상 변화하는 환경에서 작업 중일 경우에는 주변 온도가 일정하 지 않기 때문에 다음 절차를 따릅니다.

- 1 (AC/DC) 를 눌러 0°C 보상을 선택합니다. 이를 통해 상대 온도의 빠른 측정이 가능해집니다.
- 2 열전쌍 프로브와 측정 표면 간의 접촉을 피하십시오.
- 3 일정 판독값을 구했으면, ℝ)을 눌러 판독값을 상대 기준 온 도로 설정합니다.
- 4 열전쌍 프로브를 측정할 표면에 갖다 댑니다.
- 5 디스플레이에서 상대 온도를 읽습니다.

그림 3-4 표면 온도 측정

저항 측정 및 연속성 테스트

주 의
계측기 또는 DUT (테스트 대상 장치)가 손상을 입지 않도록 저항 측정을 수행하기 전에 회로 전원을 차단하고 모든 고전압 캐패시터 를 방전시키십시오.

저항을 측정하려면 다음 절차를 따릅니다.

- 1 회전 스위치를 Ω 위치로 돌립니다.
- 2 빨간색과 검정색 테스트 리드를 각각 양의 입력 단자와 음의 입 력 단자에 연결합니다.
- 3 저항기 (또는 분로) 리드를 프로빙하고 표시되는 값을 확인합니다.

연속성 테스트를 수행하려면 (AC/DC)를 눌러 가청 연속성 기능을 켜 거나 끕니다.

500Ω 범위일 경우, 저항값이 10Ω 미만으로 떨어지면 신호음이 울 립니다.다른 범위의 경우, 저항이 아래 표에 표시된 일반적인 값 아래로 내려가면 신호음이 울립니다.

표 3-1 가청 연속성 측정 범위

측정 범위	저항 임계값
500.00 Ω	10Ω
5.0000k Ω	100Ω
50.000k Ω	1kΩ
500.00k Ω	10kΩ
$5.0000 \mathrm{M}\Omega$	100kΩ
50.000M Ω	1ΜΩ

그림 3-5 저항 측정

그림 3-6 연속성 테스트 활성화 및 비활성화

3 측정 수행

측정 중 경보 및 경고

전압 측정 시 과부하 경고

경 고 자신의 안전을 위해 과부하 경고를 무시해서는 안 됩니다 . 계측기 에서 과부하 경고가 나타나면 , 즉시 측정 소스에서 테스트 리드를 분리합니다 .

> 계측기는 자동 범위 모드와 수동 범위 모드 모두에서 전압 측정에 대한 과부하 경고를 제공합니다. 측정 전압이 251V를 초과하면 주기적으로 신호음이 울리기 시작합니다. 즉시 측정 중인 소스에 서 테스트 리드를 분리합니다.

수학 연산

동적 기록

동적 기록 모드는 간헐적으로 활성화 되거나 비활성화 되는 전압 또는 전류 서지를 검출하고 자동으로 측정 성능을 확인하는 데 이 용합니다. 판독값을 기록하고 있는 중에도 다른 작업을 수행할 수 있습니다.

평균 판독값은 불안정한 입력을 평활화해 회로가 작동한 시간의 비율을 추산하며 회로 성능을 검사합니다.

작동 절차는 다음과 같습니다.

- 1 MAX·MIN 을 1 초 이상 눌러 동적 기록 모드로 들어갑니다. 계 측기는 현재 연속 모드로 되어 있으며 (Data Hold 모드 아님) 계측기에 MAX AVG MIN 표시 기호와 현재 (순간) 판독값이 표 시됩니다.
 - 계측기가 메모리에서 순간순간 평균값을 계산하고 업데이트 합니다.
 - 최대값이나 최소값이 새로 기록되면 계측기에서 신호음이 한 번 울립니다.
- 2 MAX·MIN 을 눌러 최대값, 최소값, 평균값 및 현재값을 순서대 로 확인합니다. MAX, MIN, AVG 또는 MAX AVG MIN 표시 기호가 나타나 표시된 값이 어느 것인지 알려줍니다. 59 페이지 그 림 3-7를 참조하십시오.
 - 기록한 최대값, 최소값 또는 평균값을 보고 있는 동안에도 계측기는 계속해서 이 값들을 측정하거나 계산하고 업데이 트합니다.
- 3 MAX·MIN 을 1 초 이상 눌러 동적 기록 모드를 종료합니다.

참 고

- 과부하가 발생하면 평균화 기능이 멈춥니다. 기록한 평균값은 **OL** (Overload) 이 됩니다.
- 동적 기록 모드에서는 자동 꺼짐 기능을 사용할 수 없습니다. 이것 은 디스플레이에 **() OFF** 표시 기호가 없는 것으로 알 수 있습니다.
- 자동범위에서 동적 기록을 수행할 경우, 최대값, 최소값 및 평균 값이 서로 다른 범위에서 기록될 수 있습니다.
- 수동 범위에서의 기록 주기는 약 0.067 초입니다.
- 평균값은 기록 모드가 활성화 된 이후 측정한 모든 값의 실제 평 균입니다.

그림 3-7 동적 기록 모드

상대 (제로)

상대 기능은 현재 측정 값에서 저장해 둔 값을 빼 그 차이를 표시합 니다.

- 을 눌러 현재 표시된 값을 이후 측정 시 차감할 기준 값으로 저장합니다. 그러면 △ 표시 기호가 나타납니다.
- 2 상대 모드는 자동 범위와 수동 범위 모두에서 작동하지만 현재 값이 과부하(OL) 일 경우에는 사용할 수 없습니다.
- 3 (ℝ∟)을 눌러 상대 모드를 종료합니다.

두 가지 경우가 가능합니다.

- 저항 측정일 경우, 디스플레이는 측정이 이루어지지 않을 경우 테스트 리드의 저항 때문에 0 이외의 값을 판독합니다. 이 상대 기능을 이용해 판독값을 0 점 조정할 수 있습니다.
- DC 전압 측정일 경우, 열 자극에 의해 정확도가 영향을 받습니 다. 상대 기능을 사용해 열 자극을 감소시킵니다. 표시 값이 안 정되면 테스트 리드를 단락시키고 (ℝL)를 누릅니다.

트리거링 작동

Data Hold (수동 트리거)

Data Hold 모드에서는 표시 값을 고정시킬 수 있습니다.

- 1 (HOLD)을 누르면 현재 표시된 값이 고정되고 수동 트리거 모드로 들어갑니다. 디스플레이에 DH 표시 기호가 나타납니다.
- 2 이 키를 다시 누르면 새로 측정한 값을 트리거링해 디스플레이 를 업데이트합니다. 그러면 새로 업데이트하기 전에 DH 표시 기호가 잠시 깜박입니다.
- 3 (HOLD)를 1 초 이상 눌러 이 모드를 종료합니다.

그림 3-9 Data Hold 모드

Refresh Hold (자동 트리거)

Refresh Hold 모드에서는 판독 값 변화가 지정한 카운트 값을 초과 할 때까지 표시 값을 고정시킵니다.

이 기능은 고정시킨 값을 자동 트리거링해 새 측정 값으로 업데이 트합니다.새 값으로 업데이트하면 계측기에서 신호음이 한 번 울 립니다.키패드 작동은 Data Hold 모드 작동과 비슷합니다.

- 1 설정 모드에서 Refresh Hold 모드가 활성화되어 있는지 확인합 니다.
- 2 (HOLD)를 눌러 Refresh Hold 모드로 들어갑니다.
 - 그러면 현재 값이 고정되고 디스플레이에 DH 표시 기호가 나 타납니다.
 - 순간 판독값의 변화가 사전 설정 변화 값 (설정 모드에서 정 의) 을 초과할 경우 새로 측정한 값을 고정시키며 새 판독값 이 안정될 때까지 대기한 다음 DH 표시 기호가 깜박입니다.
 - 새로 측정한 값이 안정되면 DH 표시 기호가 깜박임을 멈추고 새 값이 디스플레이에 업데이트 됩니다. 신호음이 한 번 울 립니다.
- 3 (HOLD)를 눌러 이 모드를 종료합니다.

전압 및 전류 측정 시, 판독값의 변화 폭이 500 카운트 미만이면 보 류한 값이 업데이트되지 않습니다. 저항과 다이오드 측정 시, 판 독값이 OL 또는 개방 상태일 경우 보류한 값이 업데이트되지 않습 니다. 모든 측정 시, 판독값이 안정되지 않으면 보류한 값이 업데 이트되지 않습니다.

1ms Peak Hold

이 기능을 통해 배전용 변압기 및 PFC (power factor correction) 캐패시터와 같은 구성요소의 분석을 위한 피크 전압을 측정할 수 있습니다. 얻어진 피크 전압을 사용하여 파고율을 알아낼 수 있습 니다.

파고율 = 피크 값 /True-rms 값

반주기 피크 전압을 측정하는 방법 :

- 1 (AC/DC)를 1초 이상 누르고 있으면 1ms Peak Hold 모드가 설정과 해제 사이에서 전환됩니다.
- 2 [HDD]를 누르면 피크 모드가 활성화 된 후 피크 + 또는 피크 값 이 표시됩니다. DH MAX 표시 기호는 피크 + 값을, DH MIN 표시 기호는 피크 - 값을 각각 나타냅니다. 64 페이지 그림 3-10을 참 조하십시오.
- 3 판독값이 OL 인 경우, RANGE 를 눌러 측정 범위를 바꾸고 피크 값 측정을 다시 시작합니다.
- 4 Peak Hold 모드에서는 언제라도 (DUAL) 을 눌러 피크 값 측정을 다시 시작할 수 있습니다.

3 측정 수행

그림 3-10 1ms Peak Hold 모드

U1401A 휴대용 다기능 교정기 / 미터기 사용 및 서비스 설명서

기본 설정 변경

4

Setup 모드로 들어가기 66 이용할 수 있는 설정 옵션 68 Data Hold/Refresh Hold 모드 설정 69 온도 단위 설정 71 신호기 주파수 설정 73 측정 가능한 최소 주파수 설정 74 비율 배율 판독값 설정 75 인쇄 모드 설정 76 반향 모드 설정 77 데이터 비트 설정 78 패리티 검사 설정 79 전송 속도 설정 80 디스플레이 백라이트 타이머 설정 81 절전 모드 설정 82

이 장에서는 U1401A 의 기본 설정을 변경하는 방법을 설명합니다.

Agilent Technologies

Setup 모드로 들어가기

Setup 모드로 들어가려면 다음 절차를 따릅니다.

- 1 계측기를 끕니다.
- 2 ▲ CPDC)를 누른 상태로 회전 스위치를 OFF 위치에서 다른 위치로 돌립니다.

그림 4-1 Setup 모드로 들어가기

- 3 Setup 모드에서 메뉴 항목을 구성하려면 다음 절차를 따릅니다.
 - i ◀ 또는 ▶ 를 누르면 사용 가능한 메뉴 항목을 확인할 수 있습니다.
 - II ▲ 또는 ▼ 를 누르면 설정을 변경하거나 선택할 수 있습니
 다. 사용 가능한 옵션에 관한 세부 사항은 68 페이지 표 4-1
 을 참조하십시오.
 - Ⅲ Hz 을 눌러 변경사항을 저장합니다. 이 파라미터는 비휘 발성 메모리에 남아 있게 됩니다.
- 4 SHIFT 를 1 초 이상 눌러 Setup 모드를 종료합니다.

이용할 수 있는 설정 옵션

표 4-1 설정 옵션 및 기본 설정

메뉴 항목		이용할 수 있는 설정 옵션		제조 시 기본 설정
디스플레이	설명	디스플레이	설명	
rhoLd	Data Hold/ Refresh Hold	OFF	Data Hold 활성화 (수동 트리거)	OFF
		100-1000	Refresh Hold (자동 트리거) 의 변동 카운 트를 설정합니다 .	
tEMP	온도 [1]	• d-C • d-CF • d-F • d-FC	온도 단위를 선택합니다 . 네 가지 조합을 선택할 수 있습니다 . • °C 만 • °C/ °F • °F 만 • °F/ °C	d-C
bEEP	비프	4800Hz, 2400Hz, 1200Hz, 600Hz	신호기 주파수를 설정합니다 .	4800Hz
		OFF	신호기를 비활성화 합니다 .	
FrEq	최소 주파수 측정	0.5Hz, 1Hz, 2Hz	측정할 수 있는 최소 주파수를 설정합니다 .	0.5Hz
PECnt	비율 배율	4–20mA 0–20mA	사용할 비율 배율을 선택합니다 .	4-20mA
Print	인쇄	On 또는 OFF	ON:데이터를 연속적으로 PC 로 자동 전송 합니다 .	OFF
Echo	반향	On 또는 OFF	ON: 원격 통신에서 PC 로 문자를 반환하도 록 해줍니다 .	OFF
dAtAb	데이터 비트	8 비트 또는 7 비트 (정지 비트는 항상 1 비트임)	PC 와의 원격 통신 (원격 제어) 을 위한 데 이터 비트 길이를 설정합니다 .	8 비트

메뉴 항목		이용할 수 있는 설정 옵션		제조 시 기본 설정
디스플레이	설명	디스플레이	설명	
PArtY	패리티	En, odd, nonE	PC 와의 원격 통신 (원격 제어)의 짝수 패 리티 검사,홀수 패리티 검사 또는 검사 안 함을 설정합니다.	nonE
bAud	전송 속도	2400Hz, 4800Hz, 9600Hz, 19200Hz	PC 와의 원격 통신 (원격 제어)전송 속도 를 설정합니다 .	9600Hz
bLit	디스플레이 백라이트 타 이머	1 초 ~99 초	LCD 디스플레이 백라이트를 자동으로 끄 기 위해 타이머를 설정합니다 .	30 초
		OFF	LCD 디스플레이 백라이트 자동 끄기 기능 을 해제합니다 .	
AoFF	자동 전원 끄기	1 분 ~99 분	자동 전원 끄기 타이머를 설정합니다 .	15 분
		OFF	자동 전원 끄기 기능을 해제합니다 .	

표 4-1 설정 옵션 및 기본 설정 (계속)

[1] 변경 모드를 활성화한 경우 온도 메뉴 항목이 표시되어 선택할 수 있게 됩니다. SHIFT 를 1 초 이상 누르고 있으 면 온도 옵션이 활성화 됩니다.

Data Hold/Refresh Hold 모드 설정

- Data Hold 모드 (수동 트리거) 를 활성화하려면 이 파라미터를 "OFF" 로 설정합니다.
- Refresh Hold 모드 (자동 트리거)를 활성화하려면 변동 카운 트를 100~1000 범위 안에서 설정합니다. 측정 값의 변동 폭이 이 카운트를 초과할 경우, Refresh Hold 모드가 새로운 값을 트 리거링해 업데이트할 준비를 합니다.

4 기본 설정 변경

그림 4-2 Data Hold 또는 Refresh Hold 모드 설정

온도 단위 설정

온도 단위는 네 가지 조합으로 사용할 수 있습니다.

- 섭씨만(기본디스플레이에 °C표시)
- 기본 디스플레이에는 섭씨(°C), 보조 디스플레이에는 화씨(°F) 표시 (듀얼 디스플레이 설정일 경우)
- 화씨만(기본디스플레이에 °F표시)
- 기본 디스플레이에는 화씨(°F), 보조 디스플레이에는 섭씨(°C) 표시 (듀얼 디스플레이 설정일 경우)

4 기본 설정 변경

신호기 주파수 설정

신호기 주파수는 4800Hz, 2400Hz, 1200Hz 또는 600Hz 로 설정할 수 있습니다. "OFF" 는 신호기를 사용할 수 없는 것입니다.

그림 4-4 신호기 주파수 설정

측정 가능한 최소 주파수 설정

이 설정은 주파수, 듀티사이클, 펄스 폭의 측정 속도에 영향을 미 칩니다. 일반 사양에서 정의하는 일반 측정 속도는 최소 주파수 1Hz 를 기준으로 합니다.

그림 4-5 최소 주파수 설정

비율 배율 판독값 설정

이 기능은 4mA~20mA 또는 0mA~20mA 범위를 기준으로 DC 전 류 측정 값을 비율 0%~100% 범위의 비율 배율로 환산합니다. 예 를 들어, 비율 배율이 25% 이면 DC 전류가 4mA~20mA 범위에서 는 8mA, 0mA~20mA 범위에서는 5mA 입니다.

사용 가능한 두 범위 중 하나를 고를 수 있습니다.

인쇄 모드 설정

이 기능을 on 으로 설정하면 측정 주기 완료 시 측정 데이터를 PC (원격 통신용 계측기와 연결)로 인쇄할 수 있게 됩니다.

이 모드에서는 계측기가 최종 데이터를 연속적으로 호스트로 자동 전송하지만 호스트로부터는 어떠한 명령도 받지 않습니다. 인쇄 작업 시 Remote 표시 기호가 깜박입니다.

그림 4-7 원격 제어를 위한 인쇄 모드 설정

반향 모드 설정

이 기능을 on 으로 설정하면 원격 통신 시 PC 로 문자를 반환할 수 있게 되며, 이 기능은 SCPI 명령어로 PC 프로그램을 개발할 때 유용합니다.

- 참 고
- 이 모드는 Agilent 테크놀로지스 사내 전용 모드입니다.
 일반 작동 중에는 이 기능을 비활성화 하는 것이 좋습니다.

그림 4-8 원격 제어를 위한 반향 모드 설정

데이터 비트 설정

PC 와의 원격 통신을 위한 데이터 비트 값 (데이터 폭)은 8 비트 나 7 비트로 설정할 수 있습니다. 정지 비트는 한 개뿐이며 변경할 수 없습니다.

그림 4-9 원격 제어를 위한 데이터 비트 설정

패리티 검사 설정

PC 와의 원격 통신 시 패리티 검사는 none, even 또는 odd 중 하나 로 설정할 수 있습니다.

그림 4-10 원격 제어를 위한 패리티 검사 설정

전송 속도 설정

PC 와의 원격 통신 시 사용할 수 있는 전송 속도는 2400Hz, 4800Hz, 9600Hz 또는 19200Hz 로 설정할 수 있습니다.

그림 4-11 원격 제어를 위한 전송 속도 설정

디스플레이 백라이트 타이머 설정

디스플레이 백라이트 타이머는 1 초~99 초 범위 안에서 설정할 수 있습니다. 이 설정 시간이 지나면 백라이트가 자동으로 꺼집니다.

"OFF" 는 백라이트 자동 꺼짐 기능을 해제한 것입니다.

절전 모드 설정

자동 꺼짐 기능을 활성화하려면 이 타이머를 1 분 ~99 분 범위 안 에서 아무 값으로나 설정합니다.

이 기능은 절전을 위해 고안되었습니다. 지정한 시간 내에 다음과 같은 상황이 발생하지 않는 한 지정한 시간이 지나면 계측기가 자 동으로 꺼집니다.

- 키패드에 있는 키를 누름
- 측정 기능을 바꿈
- 동적 기록 모드를 활성화 함
- 1ms Peak Hold 모드를 활성화 함
- Setup 모드에서 자동 꺼짐 기능을 비활성화 함
- 출력을 활성화 한 경우 ([OUT] 표시 기호가 나타남)

자동 꺼짐 이후 계측기를 다시 작동시키려면 회전 스위치를 OFF 로 돌린 다음 다시 켭니다.

계측기를 오래 사용해야 한다면 자동 꺼짐 기능을 비활성화 해두 면 됩니다. 자동 꺼짐 기능을 비활성화 하면 디스플레이에 **@OFF** 표시 기호가 나타나지 않습니다. 회전 스위치를 직접 **OFF** 위치로 돌리거나 배터리를 다 사용할 때까지 계측기가 켜져 있게 됩니다.

그림 4-13 자동 꺼짐 모드 설정

4 기본 설정 변경

U1401A 휴대용 다기능 교정기 / 미터기 사용 및 서비스 설명서

어플리케이션 예

5

mA 출력용 소스 모드 86 mA 출력용 시뮬레이션 모드 88 전류 루프에서 2- 와이어 송신기 시뮬레이션 90 압력 트랜스듀서 측정 92 제너 (Zener) 다이오드 테스트 94 다이오드테스트 96 BJT (Bipolar Junction Transistor) 테스트 98 트랜지스터 h_{fe} 계산 102 JFET (Junction Field-Effect Transistor) 스위치 테스트 104 연산 증폭기 검증 108 전류 - 전압 컨버터 108 전압 - 전류 컨버터 110 적분기:사각파를 삼각파로 변환 111 2- 와이어 송신기 확인 113 주파수 송신기 확인 115

이 장에서는 U1401A에 대한 몇 가지 어플리케이션 예를 설명합니다.

mA 출력용 소스 모드

이 계측기는 0mA~20mA 및 4mA~20mA 전류 루프를 테스트할 수 있는 단계별 램프 전류 출력을 꾸준히 공급합니다.

소스 모드는 루프 공급이 없는 전류 루프와 같은 수동 회로에 전류 를 공급하기 위해 사용합니다.

- 1 회전 스위치를 ≂mA/ 🕢 위치로 돌립니다.
- 2 악어 리드의 빨간색과 검정색 바나나 플러그를 양극 (+) 및 음극 (-) 출력단에 각각 연결합니다.
- **3** 빨간색과 검정색 악어 리드를 전류 루프에 연결합니다. 극성이 올바른지 확인합니다.
- 4 SHIFT 를 눌러 키패드의 변경 작동에 액세스합니다. 디스플레 이에 (SHIFT) 표시 기호가 나타납니다.
- 5 출력 레벨을 +08.000mA 로 설정하면 4mA~20mA 일 경우 25% 배율 판독이 가능합니다.
- 6 OUTPUT 을 눌러 소스 출력을 시작합니다. 디스플레이에 OUT 표시 기호가 나타납니다.

오토스캔을 이용해 전류 출력 레벨을 변경하면서 루프를 테스트할 수 있습니다. 메모리 기본 값에 대한 자세한 내용은 31 페이지 2 장, "오토스캔 출력"을 참조하십시오.

그림 5-1 소스 모드에서 4mA~20mA 전류 루프 테스트

mA 출력용 시뮬레이션 모드

mA 시뮬레이션을 수행하려면 항상 함께 제공 받은 노란색 특수 테스트 리드를 사용하십시오 .

회전 스위치를 돌려 기능을 변경하거나 계측기 전원을 끄려면 먼저 전류 루프에서 테스트 리드를 분리합니다 . 그렇지 않으면 250Ω 로드에 연결한 루프에서 전류가 16mA 이상이 됩니다 .

시뮬레이션 모드에서는 계측기가 전류 루프 송신기를 시뮬레이션 합니다.이 시뮬레이션 모드는 외부 DC 24V 또는 12V 공급이 테스 트 중인 전류 루프와 직렬로 연결된 경우에 사용합니다. 항상 노란 색 특수 테스트 리드를 사용하십시오.mA 출력 시뮬레이션을 수 행할 때에는 아래 절차를 따릅니다.

- 1 회전스위치를 ≂mA / 🕢 이나 ≂V / 🕢 위치로 돌립니다.
- 2 계측기의 양극 출력단과 전류 루프 상에 있는 측정 장치의 양극 단을 노란색 특수 테스트 리드로 연결합니다. 89 페이지 그 림 5-2 를 참조하십시오.
- 3 루프 소스의 COM 단자와 전류 루프 상에 있는 측정 장치의 음극 단을 검정색 악어 리드로 연결합니다.
- 4 계측기의 음극 출력단과 전류 루프 소스의 양극단을 빨간색 테 스트 리드로 연결합니다. 극성이 올바른지 확인합니다.
- 5 교정기 전류 레벨을 0mA~20mA 범위 안에서 설정합니다. 전 류 출력 값을 음의 값으로 설정하면 안 됩니다.
- 6 OUTPUT 을 눌러 테스트 전류를 출력합니다.

이 연결은 12V~30V 범위 안에서는 어떠한 루프 전압에서도 사용 할 수 있습니다.

계측기의 출력단에 30V가 넘는 외부 전압을 적용해서는 안 됩니다.

그림 5-2 mA 출력 시뮬레이션

주의

전류 루프에서 2- 와이어 송신기 시뮬레이션

U1401A 와 함께 제공 받은 노란색 특수 테스트 리드는 2-와이어 송신기를 시뮬레이션하는 데에도 사용할 수 있습니다. 이 리드는 빨간색 리드 (대부분 다른 어플리케이션에서 사용) 대신 사용합 니다. 이 리드는 계측기를 높은 루프 전압으로부터 보호하며 모든 어플리케이션에서 동일한 두 출력단을 사용할 수 있다는 장점도 있습니다.

- 1 회전 스위치를 $\overline{\sim}$ mA / $\overleftrightarrow{}$ 이나 $\overline{\sim}$ V / $\overleftrightarrow{}$ 위치로 돌립니다.
- 2 계측기의 양극 출력단과 전류 루프 상에 있는 측정 장치의 입력 단을 노란색 특수 테스트 리드로 연결합니다. 91 페이지 그 림 5-3 을 참조하십시오.
- 3 계측기의 음극 출력단과 전류 루프 여기 소스를 검정색 악어 리 드로 연결합니다. 극성이 올바른지 확인합니다.
- 4 전류 레벨을 0mA~20mA 범위에서 설정합니다. 전류 출력 값 을 음의 값으로 설정하면 안 됩니다.
- 5 OUTPUT 을 눌러 테스트 전류를 출력합니다.

이 연결은 12V~30V 범위 안에서는 어떠한 루프 전압에서도 사용 할 수 있습니다.

계측기의 출력단에 30V가 넘는 외부 전압을 적용해서는 안 됩니다.

그림 5-3 2- 와이어 송신기 시뮬레이션을 수행하기 위해 노란색 테스트 리드 사용.

압력 트랜스듀서 측정

압력 트랜스듀서를 측정하려면 다음 절차를 따릅니다.

- 1 회전 스위치를 **∼mV**로 돌립니다.
- 2 빨간색과 검정색 프로브 리드를 양극과 음극 입력단에 각각 연 결합니다.
- **3** 테스트 포인트 (93 페이지 그림 5-4)를 프로빙하고 디스플레이 를 읽습니다.

압력 범위	최대 출력 전압
0 PSIG~5 PSIG	50mV
0 PSIG~15 PSIG	100mV
0 PSIG~30 PSIG	80mV
0 PSIG~60 PSIG	60mV
0 PSIG~100 PSIG	100mV
0 PSIG~150 PSIG	60mV

표 5-1 mA 출력 압력 트랜스듀서의 일반 압력 범위와 최대 출력 전압

그림 5-4 압력 트랜스듀서 측정

제너 (Zener) 다이오드 테스트

주 의

계측기 손상을 방지하려면 다이오드 테스트 시 먼저 회로 전원을 차 단하고 모든 고압 캐패시터를 방전시킵니다.

제너 다이오드 테스트 수행 방법:

- 1 회전 스위치를 ≂∨ / 🕢 위치로 돌립니다.
- 2 양극 출력단과 제너 다이오드의 양극 쪽을 빨간색 악어 리드로 연결합니다.95 페이지 그림 5-5 를 참조하십시오.
- 3 음극 출력단과 제너 다이오드의 음극 쪽을 검정색 악어 리드로 연결합니다.
- 4 빨간색과 검정색 프로브 리드를 입력단에 연결합니다.
- 5 정전류 +1mA 를 출력한 다음 제너 다이오드의 순전압을 측정 합니다.
- 6 정전류 -1mA 를 출력한 다음 제너 다이오드의 파괴 전압을 측 정합니다.

다이오드 테스트

참고

상태가 양호한 다이오드에서는 전류가 한 방향으로만 흐릅니다.

다이오드 테스트 시, 회로 전원을 차단하고 회로에서 다이오드를 분리한 다음 다음과 같이 진행합니다.

- 1 회전 스위치를 ➡/ 🕢 위치로 돌립니다.
- 2 빨간색과 검정색 프로브 리드를 양극과 음극 입력단에 각각 연 결합니다.
- 3 빨간색 리드로는 다이오드의 양극 쪽을, 검정색 리드로는 음극 쪽을 각각 프로빙합니다.

다이오드의 음극은 밴드 표시가 있는 쪽입니다 .

- 4 프로브 리드를 역방향으로 해 다이오드의 전압을 다시 측정합 니다.
- 5 다이오드 상태에 따라
 - 양호할 경우: 3 단계에서 순전압이 0.3V~0.8V 정도 떨어지며 (계측기는 약 2.1V까지의 다이오드 전압 강하를 표시할 수 있음)신호음이 울립니다. 4 단계에서는 OL 표시가 나타납 니다.
 - 단락된 경우: 양방향 모두 전압 강하가 거의 0V 로 표시되며 계측기에서 연속 신호음이 울립니다.
 - 개방된 경우 : 양방향 모두 OL 이 표시됩니다.

그림 5-6 다이오드 테스트

BJT (Bipolar Junction Transistor) 테스트

BJT 에는 보통 방출기 (E), 기본 (B), 수집기 (C), 이렇게 단자 세 개 가 있습니다. BJT 의 종류는 극성에 따라 PNP 타입과 NPN 타입 두 가지가 있습니다. 제조업체로부터 특정 데이터 시트를 구할 것 을 권장합니다. U1401A을 사용해 다음 절차에 따라 BJT 의 극성 과 단자를 식별할 수 있습니다.

- 1 회전 스위치를 ➡ 위치로 돌립니다.
- 2 빨간색과 검정색 테스트 리드를 각각 양의 입력 단자와 음의 입 력 단자에 연결합니다. 양극단에서는 양극 테스트 전압을 공급 합니다.
- 3 이 예에서는 그림 5-7 에서와 같이 TO-92 패키지와 함께 BJT 를 사용합니다.

그림 5-7 TO-92 트랜지스터

4 빨간색 테스트 리드로는 핀 1 을, 검정색 테스트 리드로는 핀 2 를 각각 프로빙합니다. 측정 값이 OL 이면 프로브 방향을 바꿉 니다. 그래도 측정 값이 OL 이면 이 두 핀이 방출기와 수집기 단 자라고 간주할 수 있습니다. 나머지 핀 3 은 기본 단자입니다. 항상 어느 핀이 기본 단자인지 먼저 파악해야 합니다. 표 5-2 를 참조하십시오.

	프로		
핀	빨간색 / 검정색	검정색 / 빨간색	기본
1-2	OL	OL	3
1-3	OL	OL	2
2-3	OL	OL	1

표 5-2 프로브 테스트에 따른 기본 단자

- 5 빨간색 테스트 리드로는 기본 단자를, 검정색 테스트 리드로는 나머지 두 핀 (차례로)을 각각 프로빙합니다. 판독값을 기록 합니다.
- **6** 5 단계를 반복하지만 빨간색과 검정색 테스트 리드를 바꿉니다. 판독값을 기록합니다.
- 7 극성 (NPN 또는 PNP) 및 단자는 표 5-3, 표 5-4, 표 5-5 를 참고 해 식별할 수 있습니다. V_{be}는 항상 V_{bc} 보다 큽니다. TO-92 트 랜지스터에는 대부분 방출기로 1 번 핀이 있습니다. 제조업체 로부터 받은 특정 데이터 시트를 이용해 점검 및 확인할 것을 권 장합니다.

표 5-3 핀 3 이 기본일 경우 극성 및 단자

	핀		다자		
테스트 리드	3-1	3-2	(V _{be} >V _{bc})	유형	
빨간색 / 검	0.6749V	0.6723V	ECB	NPN	
정색	0.6723V	0.6749V	CEB	NPN	
검정색 / 빨 간색	0.6749V	0.6723V	ECB	PNP	
	0.6723V	0.6749V	CEB	PNP	

	핀		다파	
테스트 리드	2-1	2-3	(V _{be} >V _{bc})	유형
빨간색 / 검	0.6749V	0.6723V	EBC	NPN
정색	0.6723V	0.6749V	CBE	NPN
검정색 / 빨	0.6749V	0.6723V	EBC	PNP
간색	0.6723V	0.6749V	CBE	PNP

표 5-4 핀 2 가 기본일 경우 극성 및 단자

표 5-5 핀 1 이 기본일 경우 극성 및 단자

	핀		다자	
테스트 리드	1-2	1-3	(V _{be} >V _{bc})	유형
빨간색 / 검	0.6749V	0.6723V	BEC	NPN
정색	0.6723V	0.6749V	BCE	NPN
검정색 / 빨	0.6749V	0.6723V	BEC	PNP
간색	0.6723V	0.6749V	BCE	PNP

또 다른 일반 종류 트랜지스터로는 101 페이지 그림 5-8 에 나와 있 는 TO-3 패키지가 있습니다.

그림 5-8 TO-3 트랜지스터

극성 및 단자 식별 방법을 설명하기 위한 예로 실리콘 NPN 고전력 트랜지스터 (2N3055) 를 사용했습니다.

이전 절차에 따라 핀 2 가 기본입니다.

표 5-6 핀 2 가 기본일 경우 극성 및 단자

테스트 리드	핀		단자	유형	
	2-1	2-3	(V _{be} >V _{bc})		
빨간색 / 검 정색	0.5702V	0.5663V	EBC	NPN	

트랜지스터 h_{fe} 계산

참 고 올바른 결과를 얻으려면 V_{DD} 와 I_B 값을 트랜지스터 제조업체가 지 정한 조건에 따라 조절하십시오 .

NPN 타입 BJT 일 경우

- 1 회전 스위치를 ≂mA / 🕢 위치로 돌립니다.
- 2 기본을 양극 출력단에 연결합니다.
- 3 방출기를 음극 출력단과 DC 전원 공급기의 음극단 (필요한 V_{DD} 공급)에 연결합니다.
- 4 수집기를 음극 입력단에 연결합니다.
- 5 DC 전원 공급기의 양극단을 저항기를 통해 양극 입력단에 연결 합니다.
- 6 정전류 +1.000mA (이것이 I_B 임) 를 출력합니다.
- 7 측정한 전류 값을 읽습니다 (이것이 I_C 임).

PNP 타입 BJT 일 경우

- 1 회전 스위치를 ≂mA / 🕢 위치로 돌립니다.
- 2 기본을 양극 출력단에 연결합니다.
- 3 수집기를 음극 출력단과 DC 전원 공급기의 양극단 (필요한 V_{DD} 공급)에 연결합니다.
- 4 방출기를 음극 입력단에 연결합니다.
- 5 DC 전원 공급기의 음극단을 저항기를 통해 양극 입력단에 연결 합니다.
- 6 정전류 -0.500mA (이것이 I_B 임)를 출력합니다.
- 7 측정한 전류 값을 읽습니다 (이것이 IC 임).

트랜지스터 h_{fe}는 I_B에 대한 I_C의 비로 계산합니다.

어플리케이션 예 5

그림 5-9 트랜지스터 h_{fe} 계산

JFET (Junction Field-Effect Transistor) 스위치 테스트

JFET 에는 보통 드레인 (D), 게이트 (G), 소스 (S), 이렇게 단자 세 개가 있습니다. 채널 종류 (P 채널 및 N 채널)에 따라 두 가지 JFET 종류가 있습니다. 제조업체로부터 특정 데이터 시트를 구할 것을 권장합니다. U1401A 를 사용해 다음 절차에 따라 JFET 를 식별할 수 있습니다.

- 1 회전 스위치를 Ω 위치로 돌립니다.
- 2 빨간색과 검정색 테스트 리드를 각각 양의 입력 단자와 음의 입 력 단자에 연결합니다. 양극단에서는 양극 테스트 전압을 공급 합니다.
- 3 이 예에서는 그림 5-10 에서와 같이 TO-92 패키지와 함께 JFET 를 사용합니다.

그림 5-10 TO-92 JFET

4 빨간색 테스트 리드로는 핀 1 을, 검정색 테스트 리드로는 핀 2 를 각각 프로빙합니다. 그런 다음 테스트 리드 방향을 서로 바꿔 판 독값을 구합니다. 두 판독값이 모두 <1kΩ 인 경우, 이 두 핀을 드 레인과 소스 단자로 간주할 수 있습니다. 나머지 핀 3 은 게이트 단자입니다. 항상 어느 핀이 게이트 단자인지 먼저 파악해야 합 니다. 105 페이지 표 5-7 를 참조하십시오.

핀	테스트 리드		게이트
	빨간색 / 검정색	검정색 / 빨간색	
1-2	<1kΩ	<1kΩ	3
1-3	<1kΩ	<1kΩ	2
2-3	<1kΩ	<1kΩ	1

표 5-7 프로브 테스트에 따른 게이트 단자

정전압 소스로 바이어스 된 경우에는 드레인 - 소스 저항 (R_{DS}) 을 측정해 JFET 채널 종류를 식별할 수 있습니다 . 보통 , 게이트 - 소 스 전압 (V_{GS}) 이 0V 일 경우에는 두 채널 종류 모두 켜집니다 .

- 5 빨간색 입력 프로브 리드를 드레인에 연결합니다.
- 6 검정색 입력 프로브 리드를 소스에 연결합니다.
- 7 빨간색 출력 악어 리드를 100kΩ 저항기를 통해 게이트 단자에, 검정색 출력 악어 리드를 검정색 입력 프로브 리드에 각각 연결 합니다.

V_{GS} 가 음의 값일 경우 R_{DS} 가 증가하면 이는 N 채널 JFET 입니다. 반대로, V_{GS} 가 양의 값일 경우 R_{DS} 가 증가하면 이는 P 채널 JFET 입니다.

N 채널 JFET 의 차단 전압

N 채널 JFET 의 차단 전압을 알아보는 방법 :

- 1 빨간색 입력 프로브 리드를 드레인에 연결합니다.
- 2 검정색 입력 프로브 리드를 소스에 연결합니다.
- 3 빨간색 출력 악어 리드를 100kΩ 저항기를 통해 게이트 단자에, 검정색 출력 악어 리드를 검정색 입력 프로브 리드에 각각 연결 합니다.
- 4 전압 출력을 +00.000V에서 -15.000V로 점차적으로 낮춥니 다. 그러면 R_{DS} 값이 그에 따라 상승할 것입니다 (106 페이지 그림 5-11).
- 5 저항값이 OL 이 되는 시점을 관측합니다. 이 시점에서의 전압 바이어스 레벨이 N 채널 JFET 의 차단 전압이 됩니다.

그림 5-11 N 채널 JFET

P 채널 JFET 의 차단 전압

P 채널 JFET 의 차단 전압을 알아보는 방법:

- 1 빨간색 입력 프로브 리드를 드레인에 연결합니다.
- 2 검정색 입력 프로브 리드를 소스에 연결합니다.
- 3 빨간색 출력 악어 리드를 100kΩ 저항기를 통해 게이트 단자에, 검정색 출력 악어 리드를 검정색 입력 프로브 리드에 각각 연결 합니다.
- 4 전압 출력을 +00.000V에서 +15.000V로 점차적으로 낮춥니 다. 그러면 R_{DS} 값이 그에 따라 상승할 것입니다 (107 페이지 그림 5-12).
- 5 저항값이 OL 이 되는 시점을 관측합니다. 이 시점에서의 전압 바이어스 레벨이 P 채널 JFET 의 차단 전압이 됩니다.

그림 5-12 P 채널 JFET

연산 증폭기 검증

이상적인 증폭기는 다음과 같은 특성을 갖고 있다고 할 수 있습니다.

- 무한 게인
- 무한 입력 임피던스
- 무한 대역폭(0 부터 무한대까지 확장할 수 있는 대역폭)
- 제로 출력 임피던스
- 제로 전압 및 전류 오프셋

차동 연산 증폭기에 피드백을 적용하는 방법에는 기본적으로 두 가지가 있습니다. 한 가지는 연산 증폭기를 반전 전류 - 전압 컨버 터로 구성하는 것이고, 다른 하나는 연산 증폭기를 비반전 전압 -전류 변환기로 구성하는 것입니다.

전류 - 전압 컨버터

이상적인 연산 증폭기는 전류 - 전압 컨버터로 작용할 수 있습니다. 그림 5-13 에서 보면, 이상적인 연산 증폭기는 접지 전위에서 반전 입력단을 유지하고 어떠한 입력 전류든 피드백 저항기를 통해 흐르 도록 강제합니다. 따라서 I_{in} = I_f 이고 V_o = - I_f x R_f 입니다. 회로가 이상적인 전류 측정의 근간이 되는데, 측정 회로에 제로 전압 강하 를 유도하고 반전 입력단에서 직접 측정한 것처럼 회로의 유효 입 력 임피던스는 제로입니다.

- 1 회전 스위치를 ≂Ⅴ / 🕢 위치로 돌립니다.
- 2 전압 측정을 위해 DC 50V 범위를 직접 선택합니다.
- 3 빨간색과 검정색 프로브 리드를 양극과 음극 입력단에 각각 연 결합니다.
- 4 빨간색과 검정색 악어 리드를 양극과 음극 출력단에 각각 연결 합니다.
- 5 연산 증폭기를 그림 5-13 에서와 같이 연결합니다.
- 6 +15V 및 -15V 출력을 내는 DC 전원 공급기를 사용해 연산 증폭 기를 가동합니다.

- 7 연산 증폭기에 정전류 +00.000mA 를 공급하고 오프셋 전압 V_o 을 측정합니다.
- 8 +00.000mA 부터 +12.000mA 까지 U1401A 출력 전류를 점차적으로 높여 가면서 연산 증폭기의 출력 전압을 모니터링합니다. 그러면 V_o 값은 약 00.000V 에서 약 -12.000V 까지 증가할 것입니다. 실제 V_o는 피드백 저항기의 허용공차와 연산 증폭기의 오프셋의 영향을 받습니다.

그림 5-13 전류 - 전압 컨버터

전압 - 전류 컨버터

차동 입력 전압을 제로로 유지하면,그림 5-14 에 나와 있는 연산 증폭기가 전류 I = V_{in}/R1 이 피드백 경로에서 R2 부하를 따라 흐르 도록 강제합니다.이 전류는 부하와 무관합니다.

- 1 회전 스위치를 ≂Ⅴ / 🖓 위치로 돌립니다.
- 2 전압 측정을 위해 DC 50V 범위를 직접 선택합니다.
- 3 빨간색과 검정색 프로브 리드를 양극과 음극 입력단에 각각 연 결합니다.
- 4 빨간색과 검정색 악어 리드를 양극과 음극 출력단에 각각 연결 합니다.
- 5 연산 증폭기를 그림 5-14 에서와 같이 연결합니다.
- 6 +15V 및 -15V 출력을 내는 DC 전원 공급기를 사용해 연산 증폭 기를 가동합니다.
- 7 U1401A 출력 전압을 +00.000mV 부터 +06.000V 까지 점차적으로 높이면서 연산 증폭기의 출력 전압을 측정합니다. 그러면 출력 전압도 약 +00.000V 에서 약 +12.000V 까지 높아지는 것을 볼 수 있을 것입니다. 그리고 나서 필요한 계산을 수행해 전압 전류 컨버터의 특성을 확인할 수 있습니다.

그림 5-14 전압 - 전류 컨버터

적분기:사각파를 삼각파로 변환

112 페이지 그림 5-15 의 적분 회로는 입력 전압 적분과 비례하는 출력 전압을 만들어냅니다.

이 적분기의 많은 용도 중 하나는 사각파를 삼각파로 변환하는 것 입니다.

- 1 회전 스위치를 ≂∨ / ♫♫♫ 위치로 돌립니다.
- 2 빨간색과 검정색 악어 리드를 양극과 음극 출력단에 각각 연결 합니다.
- 3 연산 증폭기를 112 페이지 그림 5-15 에서와 같이 연결합니다.
- 4 +15V 및 -15V 출력을 내는 DC 전원 공급기를 사용해 연산 증폭 기를 가동합니다.

U1401A 사용 및 서비스 설명서

- 5 오실로스코프를 사용해 출력 파형을 모니터링합니다.
- 6 사각파 듀티사이클을 50.00% 로, 진폭을 5V 로 각각 설정합니다.
- 7 사각파를 출력합니다.
- 8 다른 주파수를 선택해 듀티사이클을 변경하면서 적분기의 특성 을 보다 깊게 이해하도록 합니다.

그림 5-15 사각파를 삼각파로 변환

2- 와이어 송신기 확인

다음과 같은 방법으로 2- 와이어 송신기의 작동 상태를 확인할 수 있습니다. 이 방법에서는 계측기가 소스 전압과 전류를 동시에 측 정할 수 있는 기능을 이용합니다.

- 1 회전 스위치를 ≂mA / ↔ 위치로 돌립니다.
- 2 계측기의 양극 출력단과 2- 와이어 송신기의 양극 출력단을 빨 간색 악어 리드로 연결합니다. 114 페이지 그림 5-16 을 참조하 십시오.
- 3 계측기의 음극 출력단과 음극 입력단을 단락 플러그로 연결합니다.
- 4 계측기의 양극 입력단과 2- 와이어 송신기의 음극 출력단을 검 정색 악어 리드로 연결합니다.
- 5 공급 전압은 +15V 이하로 설정합니다.
- 6 OUTPUT 을 눌러 여기 전압을 출력합니다.
- 7 입력 신호가 있을 경우 계측기 디스플레이에 송신기 출력 전류 가 표시됩니다.

5 어플리케이션 예

그림 5-16 2- 와이어 송신기 확인

주파수 송신기 확인

일부 주파수 송신기에서는, 사각파 출력을 소스 시뮬레이터로 사용해 송신기 출력에서 전류를 측정할 수 있습니다.

- 1 회전 스위치를 ∼mA / ЛЛЛ 위치로 돌립니다.
- 2 MODE 를 누르면 듀티사이클, 펄스 폭, 출력 레벨, 주파수 조정 이 순서대로 표시됩니다.
- 3 출력 주파수를 150Hz 로, 듀티사이클을 50% 로 각각 설정합니다.
- 4 U1401A 의 입력단과 트랜스듀서의 출력단을 프로브 리드로 연 결합니다.
- 5 악어 리드를 사용해 U1401A 의 출력단과 트랜스듀서의 입력단 을 연결합니다. 극성이 올바른지 확인합니다.
- 6 OUTPUT 을 눌러 신호를 출력합니다.
- 7 디스플레이를 읽습니다. 측정 전류를 확인해 주파수가 트랜스 듀서 사양과 일치하는지 검사합니다.
- 8 사각파 주파수를 변경해 디스플레이에서 측정 전류를 모니터링 합니다.

5 어플리케이션 예

U1401A 휴대용 다기능 교정기 / 미터기 사용 및 서비스 설명서

유지보수

6

유지보수 118 일반유지보수 118 배터리교체 119 배터리충전 120 퓨즈교체 121 문제해결 123

이 장에서는 U1401A 장애 문제 해결 방법을 소개합니다.

Agilent Technologies

유지보수

주 의 본 매뉴얼에서 다루지 않는 수리나 서비스는 자격을 갖춘 직원 만 수행할 수 있습니다 .

일반 유지보수

경 고 어떤 측정을 하든지 먼저 특정 측정에 맞게 단자를 올바로 연결했 는지 확인해야 합니다 . 계측기 손상을 피하려면 정격 입력 제한을 초과하지 마십시오 .

위에서 언급한 위험사항 외에도 단자 안으로 먼지나 물기가 들어가 면 판독값이 왜곡될 수 있습니다. 청소 절차는 다음과 같습니다.

경고 감전이나 계측기 손상을 피하려면 케이스 안으로 물이 들어가지 않 도록 합니다 .

- 1 계측기를 끈 후 테스트 리드를 분리합니다.
- 2 계측기를 뒤집은 후 흔들어 단자 안에 쌓인 먼지를 모두 털어냅니다.
- 3 천에 순한 세제를 묻혀 케이스를 닦습니다. 벤진, 벤젠, 톨루엔, 크실렌, 아세톤 또는 유사 화학물질을 함유하고 있는 연마재나 용제를 사용해서는 안 됩니다. 또한 액체 세제를 계측기에 직접 분사하면 케이스 안으로 스며들어 손상을 유발할 수 있으니 주의 하십시오. 알코올에 적신 깨끗한 면봉으로 각 단자의 접촉면을 닦습니다.
- 4 계측기에서 물기가 완전히 사라진 다음에 사용하십시오.

배터리 교체

경고

배터리에는 니켈 - 금속 수소화물이 함유되어 있으므로 올바로 재 활용하거나 처리해야 합니다 . 덮개를 열기 전에 테스트 리드 모두와 외장형 어댑터를 분리합니다 .

계측기는 충전지 4 개로 가동합니다.계측기가 사양에 맞게 작동 하도록 하려면, 배터리 부족 표시 기호가 깜박거리기 시작할 때 바 로 배터리를 교체하는 것이 좋습니다.다음은 배터리 교체 절차입 니다.

- 1 후면판에 있는 배터리 덮개에서 나사를 풉니다.
- 2 덮개를 왼쪽으로 밀어 당겨 벗겨냅니다. 그림 6-1 을 참조하십 시오.
- 3 배터리를 모두 교체하는 것이 좋습니다.
- 4 배터리 덮개를 닫으려면 위 절차를 반대로 진행합니다.

그림 6-1 배터리 교체

배터리 충전

경고

단락시키거나 극성을 바꿔 배터리를 방전시키지 마십시오. 종류가 다른 배터리를 함께 사용하지 마십시오. 배터리를 충전하기 전에 충전용 배터리인지 확인합니다.

이 계측기는 충전지 4 개로 가동합니다. 배터리 부족 표시 기호가 깜박거리기 시작하면 바로 배터리를 교체하십시오. 이 충전지를 충전하려면 정해진 24V AC 어댑터만 사용할 것을 강력 권장합니 다. DC 24V 가 충전 단자로 흘러 들어갈 수 있으므로 계측기를 충 전하는 중에는 회전 스위치를 돌리지 마십시오.

배터리를 충전하려면 다음 절차를 따르십시오.

- 1 게측기 전원을 끄고 단자에서 테스트 리드를 모두 분리합니다.
- 2 AC 어댑터를 측면판에 있는 잭에 연결합니다.
- 3 슬라이드 스위치를 CHARGE 위치로 설정합니다.
- 4 빨간색 표시등은 배터리가 충전 중임을 나타냅니다.
- 5 배터리가 완전히 충전되었으면 녹색 표시등이 켜집니다. AC 어 댑터를 분리하고 슬라이드 스위치를 M 또는 M/S 위치로 설정 합니다.

그림 6-2 배터리 충전

퓨즈 교체

참 고 본 설명서에는 퓨즈 교체 절차만 포함되어 있으며 퓨즈 교체 표시는 포함되어 있지 않습니다 .

손상된 퓨즈가 있으면 다음 절차에 따라 교체하십시오.

- 1 게측기 전원을 끄고 테스트 리드를 모두 분리합니다. 충전 어댑 터도 분리해야 합니다.
- 2 배터리 덮개와 배터리를 빼냅니다.
- 3 케이스 밑에 있는 나사 3 개를 풀어 밑 덮개를 벗겨냅니다.
- 4 그림 6-3 에서와 같이 회로기판을 빼냅니다.
- 5 퓨즈의 한쪽 끝을 지레 원리로 들어올려 결함이 있는 퓨즈를 조 심스럽게 밀어 퓨즈 브래킷에서 꺼냅니다.
- 6 크기와 정격이 동일한 새 퓨즈로 교체합니다.새 퓨즈가 퓨즈 홀더 가운데로 오도록 합니다.
- 7 퓨즈 교체 절차를 진행하는 내내, 위 덮개에 있는 회전 스위치 의 노브와 회로기판에 있는 회전 스위치 자체가 OFF 위치로 되 어 있어야 합니다.

U1401A 사용 및 서비스 설명서

6 유지보수

- 8 퓨즈 교체 후, 회로기판과 밑 덮개를 다시 장착합니다.
- 9 퓨즈의 제품 번호, 정격 및 크기에 대해서는 표 6-1 을 참조하십 시오.

표 6-1 퓨즈 사양

퓨즈	Agilent 제품 번호	정격	크기	유형
1	A02-62-25623-1B	630mA/250V	5mm x 20mm	세라믹으로 된 속단형
2	A02-62-25593-1U	63mA/250V	5mm x 20mm	지연형 UL/VDE

그림 6-3 퓨즈 교체
문제 해결

경고

감전을 피하려면 자격을 갖추지 않고서는 어떠한 서비스 작업도 수 행하지 마십시오.

계측기가 작동하지 않으면 배터리와 테스트 리드를 검사하여 필요 하다면 교체합니다.그래도 계측기가 작동하지 않으면 이 지침서 에서 설명하는 작업 절차를 올바로 따랐는지 확인한 다음에 계측 기 수리를 고려해 보십시오.

계측기를 수리할 때에는 정해진 교체품만 사용하십시오.

표 6-2 는 몇 가지 기본적인 문제점을 찾아내는 데 도움이 될 것입 니다.

표 6-2 문제 해결

고장	문제 파악
전원을 켜도 LCD 디스플레이 가 켜지지 않음	• 슬라이드 스위치의 위치를 확인합니다 . M 또는 M/S 위치로 설정합니다 . • 배터리를 확인합니다 . 필요에 따라 배터리를 충전하거나 교체합니다 .
신호음이 울리지 않음	신호기를 비활성화 (OFF) 했는지 셋업 모드를 확인합니다 . 그런 후 원하는 구 동 주파수를 선택하십시오 .
전류 측정 실패	퓨즈 1 을 점검합니다 .
다음과 같은 경우에 출력 신 호가 없는 경우 • OUT 표시 기호가 표시됨 • OUTPUT 키를 눌렀는데 OUT 표시 기호만 잠깐 나 타났다가 SBY 표시 기호로 바뀜	 배터리가 부족한 경우입니다. 슬라이드 스위치의 위치를 확인합니다. M/S 위치로 설정합니다. 정격 제한을 초과하지 않았는지 외부 부하를 점검합니다. 루프에 24V 전원이 흐르는지 점검합니다. 그렇다면, mA 시뮬레이션용 노란색 특수 테스트 리드를 사용하십시오 (5 장, "mA 출력용 시뮬레이션 모드 " 참조). 퓨즈 2 를 점검합니다.

6 유지보수

표 6-2 문제 해결 (계속)

고장	문제 파악
충전 표시가 없음	 슬라이드 스위치를 CHARGE 위치로 설정합니다. 출력이 24VDC 인지 그리고 충전 단자에 올바로 연결했는지 외장형 어댑터를 점검합니다. 라인 전압 (100VAC~250VAC 47Hz/63Hz) 과 전원 코드를 점검합니다.
원격 제어 실패	 케이블의 광 쪽을 계측기에 연결하고 커넥터 커버의 텍스트 쪽이 위를 향해야 합니다. 전송 속도,패리티,데이터 비트,정지 비트를 확인합니다 (기본값:9600, n, 8, 1). PC 에서 USB-RS232 용 드라이버를 설치합니다.

U1401A 휴대용 다기능 교정기 / 미터기 사용 및 서비스 설명서

성능 테스트 및 교정

7

교정 개요 126 케이스를 열지 않은 상태로 전자 교정 126 Agilent 테크놀로지스 교정 서비스 126 교정 주기 127 환경 조건 127 예열 127 권장 테스트 장비 128 조정 고려사항 129 조정 질차 130 온도 교정 130 출력 교정 131 성능 검증 테스트 134 자가 검증 134 입력 성능 검증 135 출력 성능 검증 139

이 장에서는 U1401A 가 공개 사양에 맞게 작동하도록 하기 위해 필요한 성능 검사 절차와 조정 절차를 설명합니다.

Agilent Technologies

교정 개요

비휘발성 메모리에 저장해 둔 기본 교정 데이터가 손상되지 않 도록 하려면 계측기 교정은 공인 서비스 센터나 적합한 장비와 자격을 갖춘 직원만 수행하도록 하는 것이 좋습니다. 교정 절차 에 대한 자세한 내용은 가까운 Agilent 테크놀로지스 영업소나 공 인 대리점으로 문의하시기 바랍니다.

케이스를 열지 않은 상태로 전자 교정

본 계측기는 케이스를 닫은 상태에서 전자 교정을 할 수 있는 것이 특징입니다. 내부 기계적 조정이 필요하지 않습니다. 이 계측기는 교정 프로세스 중에 공급한 입력 기준 신호를 기반으로 보정 계수 를 계산합니다. 새로운 보정 계수는 다음 교정을 수행할 때까지 비 휘발성 메모리에 저장 됩니다. 본 계측기는 공인 대리점이 판매하 는 원격 소프트웨어를 사용해서도 교정 및 확인할 수 있습니다.

Agilent 테크놀로지스 교정 서비스

계측기 교정 만기일이 되면 저렴한 재교정을 위해 현지 Agilent 서 비스 센터에 연락하십시오. 본 제품에는 Agilent 가 이 서비스를 경쟁력 있는 가격에 제공할 수 있도록 해주는 자동 교정 시스템이 지원됩니다.

교정 주기

대부분 어플리케이션에서는 교정 주기로 1 년이 적합합니다. 정확 도 사양은 정기적인 교정 주기에 조정을 수행한 경우에만 보장됩니 다. 1 년 교정 주기를 지키지 않으면 정확도 사양을 보장할 수 없습 니다. Agilent는 어떤 어플리케이션에 대해서도 교정 주기를 2 년 이상으로 연장하는 것은 권장하지 않습니다.

환경 조건

교정 또는 검증 테스트는 주변 온도나 상대 습도를 조절할 수 있는 실험실 조건에서 수행하는 것이 좋습니다.

예열

적어도 20 분 정도 계측기를 예열시킨 다음 교정을 수행하십시오. 습도가 높은 (응결) 환경에 노출되었거나 보관한 후에는 회복 시 간이 상대적으로 길어집니다.

권장 테스트 장비

표 7-1 에는 성능 검사와 조정 절차에 권장하는 테스트 장비가 기 재되어 있습니다. 동일한 계측기를 사용할 수 없는 경우, 정확도 가 동일한 교정 표준으로 대체하십시오.

표 7-1 권장 테스트 장비

표준 소스	작동 범위	권장 장비	권장 정확도 요구사항
DC 전압 교정기	0V ~ 250V	Fluke 5520A 또는 이에 준하는 제품	$\leq \pm 0.002\%$
DC 전류 교정기	0mA ~ 500mA	Fluke 5520A 또는 이에 준하는 제품	$\leq \pm 0.03\%$
저항 교정기	450Ω, 4.5kΩ, 45kΩ, 450kΩ, 4.5MΩ	Fluke 5520A 또는 이에 준하는 제품	$\leq \pm 0.01\%$
	50MΩ	Fluke 5520A 또는 이에 준하는 제품	$\leq \pm 0.1\%$
AC 전압 교정기	0V~250V, 20kHz	Fluke 5520A 또는 이에 준하는 제품	$\leq \pm 0.01\%$
AC 전류 교정기	10mA~500mA, 2kHz	Fluke 5520A 또는 이에 준하는 제품	$\leq \pm 0.05\%$
오디오 레벨 발생기	5V/1KHz	Fluke 5520A 또는 이에 준하는 제품	$\leq \pm 0.005\%$
얼음점 레퍼런스 챔버	0°C	OMEGA TRCIII 또는 이에 준하는 제품	$\leq \pm 0.1^{\circ}C$
5 1/2 디지털 멀티미터	1.2V 및 12V/ 분해능 : 0.01mV/ 0.1mV 12V 및 120V/ 분해능 : 0.1mV/ 1mV 12mA 및 120mA/ 분해능 : 0.1A/ 1A	Agilent 34405A 또는 이에 준하는 제품	$\leq \pm 0.012\%$

조정 고려사항

계측기를 조정 (교정) 하려면 기준 신호를 수신하기 위해 일련의 입력 케이블과 커넥터가 필요합니다. 단락 플러그도 필요합니다.

각 기능을 조정하려면 다음 사항을 고려해야 합니다(해당하는 경우).

- 5 분 정도 계측기가 예열 되어 안정될 때까지 기다렸다가 조정 을 수행합니다.
- 조정 중 배터리가 부족하지 않을지 확인해야 합니다. 판독값 오 류를 피하려면 조정을 수행하기 전에 배터리를 교체하거나 충 전합니다.
- 테스트 리드를 교정기와 이 계측기에 연결할 때에는 열 자극을 고려해야 합니다. 교정을 시작하기 전에 테스트 리드를 연결한 후 1 분간 기다리는 것이 좋습니다.
- 상온 조정 도중에는 계측기와 교정 소스 사이에 K 타입 열전쌍 이 연결된 상태로 1 시간 이상 계측기를 켜 놓으십시오.

교정 도중 계측기를 끄지 마십시오.그러면 현재 기능에 대한 교 정 메모리가 삭제될 수 있습니다.

조정 절차

온도 교정

- 1 교정 모드에서 회전 스위치를 mV 위치로 돌립니다.
- 2 REL 을 1 초 이상 눌러 온도 교정으로 들어갑니다.
- **3** K 타입 열전쌍을 입력단에 연결합니다. 0°C 를 나타내는 기준 입력 신호를 공급하고 10 분간 기다립니다.
- 4 (Hz)을 눌러 온도 교정을 완료합니다.

출력 교정

- 1 슬라이드 스위치를 M/S 위치로 설정합니다.
- 2 10 분 정도 계측기가 예열될 때까지 기다렸다가 교정을 수행합니다.
- 3 교정 모드로 들어가려면 AC/DC와 DUAL)을 1초 이상 누르고 있 습니다. 기본 디스플레이에 "CHEEP" 가 표시됩니다.
- 4 회전 스위치를 "Current Input/Voltage Output" 위치 중 하나로 돌린 다음 SHIFT 를 1 초 이상 눌러 출력 교정 모드로 들어갑니다.

CAL-0 & CAL-1

출력 교정 모드에서는 기본 및 보조 디스플레이에 "CAL-0" 과 "-rdy-" 가 각각 표시됩니다 .

출력단을 멀티미터에 연결합니다 (권장 테스트 장비에 대해서는 128 페이지 표 7-1 참조).

- CAL-0:
 - 1 OUTPUT을 누릅니다. 기본 및 보조 디스플레이에 "CAL-0"과 "00000" 이 각각 표시됩니다.
 - 2 계측기 판독값이 안정될 때까지 기다렸다가 값을 기록합니다.
- CAL-1:
 - 1 MODE 를 누릅니다. 기본 및 보조 디스플레이에 "CAL-1" 과 "-rdy" 가 각각 표시됩니다.
 - 2 OUTPUT을 누릅니다. 기본 및 보조 디스플레이에 "CAL-1"과 "00000" 이 각각 표시됩니다.
 - 3 ▲ 또는 ▼ 을 눌러 미터기 판독값이 위에서 기록한 CAL-0 값과 같아질 때까지 출력 전압을 조정합니다.
 - 4 MODE 를 눌러 CAL-0 과 CAL-1 교정을 완료합니다.

CAL-0 및 CAL-1 교정 절차를 완료하면,계측기가 자동적으로 1.5V 출력 교정 모드로 들어갑니다.

출력 전압 교정

아래 절차에 따라 출력 전압 범위와 표 7-2 에 기재되어 있는 값을 교정합니다.

- 1 각 교정 절차를 진행하면 기본 및 보조 디스플레이에 *출력 전압 값*과 "-rdy-" 가 각각 표시됩니다.
- 2 OUTPUT 을 누릅니다. 기본 및 보조 디스플레이에 출력 전압 값 과 "00000" 이 각각 표시되는데, 이것은 현재의 출력 레벨이 기 본 디스플레이에 표시된 것과 같다는 것을 의미합니다.
- 3 ▲ 또는 ▼ 을 눌러 멀티미터 판독값이 기본 디스플레이에 표 시된 값과 같아질 때까지 출력 전압을 조정합니다.
- 4 MODE 를 눌러 다음 교정 절차로 들어갑니다.

표7-2 출력 전압 교정 절차

전압 범위	교정 절차	출력 전압 값			
	1	+0.0000V			
1.5V	2	+1.1000V			
	3	-1.1000V			
	4	+00.000V			
15V	5	+11.000V			
	6	-11.000V			

마지막 교정 절차가 끝나고 MODE 버튼을 누르면 기본 디스플레이 에 "PASS" 가 표시됩니다.

출력 전류 교정

- 1 교정 모드를 종료하지 말고 회전 스위치를 "Current Input/Voltage Output" 위치 중 하나로 돌립니다.
- 2 출력단을 권장 멀티미터에 연결합니다 (권장 테스트 장비에 대 해서는 128 페이지 표 7-1 참조).

아래 절차에 따라 출력 전압 범위와 표 7-3 에 기재되어 있는 값을 교정합니다.

- 1 각 교정 절차로 들어가면, 기본 및 보조 디스플레이에 *출력 전 류 값*과 "-rdy-" 가 각각 표시됩니다.
- 2 OUTPUT 을 누릅니다. 기본 및 보조 디스플레이에 *출력 전류 값* 과 "00000" 이 각각 표시되는데, 이것은 현재의 출력 레벨이 기 본 디스플레이에 표시된 것과 같다는 것을 의미합니다.
- 3 ▲ 또는 ▼ 을 눌러 멀티미터 판독값이 기본 디스플레이에 표 시된 값과 같아질 때까지 출력 전류를 조정합니다.
- 4 MODE 를 눌러 다음 교정 절차로 들어갑니다.

표 7-3 출력 전류 교정 절차

전류 범위	교정 절차	출력 전류 값
	1	+00.000mA
25mA	2	+11.000mA
	3	–11.000mA

마지막 교정 절차가 끝나고 MODE 버튼을 누르면 기본 디스플레이 에 "PASS" 가 표시됩니다.

성능 검증 테스트

자가 검증

계측기의 출력 전압 레벨에 대해 자가 검증을 수행하는 방법:

- 1 회전 스위치를 ≂▼ / 🕢 위치로 돌립니다.
- 2 전압 측정용 입력 테스트 리드를 단락시킨 다음 ℝ 을 잠깐 눌러 측정 값이 안정될 때까지 잔여 열 자극을 제거합니다.
- 3 입력과 출력의 양극을 서로 연결합니다.
- 4 입력과 출력의 음극을 서로 연결합니다.
- 5 출력 값을 +4.5000V 로 설정합니다.
- 6 기본 디스플레이에서 측정 값을 주시합니다.

자가 검증할 수 있는 기능에 대해서는 표 7-4를 참조하십시오.

표 7-4 자가 검증이 가능한 기능

회전 스위치 위치	출력 값	측정 값 (입력)		
\sim V/(C)	+4.5000V	DC 4.5000V		
≂ mA / 🐼	+25.0000mA	DC 25.0000mA		
≂v/ JUU	100Hz	100.00Hz		
	0.39~99.60%	0.3~99.6%		
	±5V	AC 4.9586V		
	±12V	AC 11.959V		

표 7-4 는 참조용입니다. 자세한 사양은 143 페이지 8 장, "사양 " 을 참조하십시오.

입력 성능 검증

U1401A 휴대용 다기능 교정기 / 미터기의 입력 기능을 검증하려 면 표 7-5 에 명시되어 있는 검증 테스트를 수행하십시오. 각 기능 을 검증하는 데 필요한 권장 테스트 장비는 128 페이지 표 7-1 을 참조하십시오.

표 7-5 입력 성능 검증 테스트

단계	기능	교정기에 연결	범위	교정기 출력	1 년 내 공칭 오차
1	회전 스위치를 mV 로 돌립	교정기의 Normal Hi-Low	50mV	0.05V	±2.55mV
	니나.(< 신나.(선택합니다.	줄력난을 U1401A 입력난 에 연결합니다.		-0.05V	±2.55mV
	회전 스위치를 ∼∨로돌	회전 스위치를 ╲✔로 돌 립니다. 를 눌러 DC 를 선택합니다.	500mV	0.5V	±15.1mV
				-0.5V	±15.1mV
			5V	5V	±0.151V
	립니다. 를 눌러 DC 를 선택합니다.			—5V	±0.151V
			50V	50V	±1.51V
				–50V	±1.51V
			250V	250V	±7.55V
				-250V	±7.55V

표 7-5 입력 성능 검증 테스트 (계속)

단계	기능	교정기에 연결	범위	교정기 출력	1 년 내 공칭 오차
2	2 회전 스위치를 mV 로 돌립 니다. 니다. 소대합니다. 교정기의 Normal Hi-Low 	50mVrms @ 45Hz	±0.39mVrms		
		에 선물입니다.	제 연달법니다. 500mV	50mVrms @ 5kHz	±0.79mVrms
				50mVrms @20kHz	±0.79mVrms
				500mVrms @ 45Hz	±3.7mVrms
				500mVrms @ 5kHz	±7.7mVrms
				500mVrms @ 20kHz	±7.7mVrms

표 7-5 입력 성능 검증 테스트 (계속)

단계	기능	교정기에 연결	범위	교정기 출력	1 년 내 공칭 오차
2 (계속)	2 회전 스위치를 ~ ∨로돌 교경 계속) 립니다. (∞∞)를 눌러 AC 출력	교정기의 Normal Hi-Low 출력단을 U1401A 입력단	5V	5Vrms @ 45Hz	±37mVrms
	를 선택합니다 .	에 연결합니다 .		5Vrms @ 5kHz	±77mVrms
				5Vrms @ 20kHz	±77mVrms
			50V	50Vrms @ 45Hz	±0.37Vrms
				50Vrms @ 5kHz	±0.77Vrms
				50Vrms @ 20kHz	±0.77Vrms
			250V	250Vrms @ 45Hz	±1.95Vrms
			250Vrms @ 5kHz	±3.95Vrms	
				250Vrms @ 20kHz	±3.95Vrms
3	회전 스위치를 ~~ ∨로 돌 립니다 . 他 를 눌러 주	교정기의 Normal Hi-Low 출력단을 U1401A 입력단	100Hz	10Hz @ 16mV	±0.023Hz
	파수를 선택합니다. 에 연결합니다	에 연결합니다 .	100kHz	20kHz @ 16V	±23Hz
			200kHz	200kHz @ 24mV	±43Hz
4	회전 스위치를 ~~ ∨로 돌 립니다. 他 를 눌러 듀	교정기의 Normal Hi-Low 출력단을 U1401A 입력단	0.1%~99%	50% @ 50Hz @ 5Vac	0.3%
	티사이클을 선택합니다 . 에	에 연결합니다.		50% @ 800Hz @ 5Vac	0.3%

표 7-5 입력 성능 검증 테스트 (계속)

단계	기능	교정기에 연결	범위	교정기 출력	1년 내 공칭 오차
5	회전 스위치를 ~~ ∨로 돌 립니다 . ⊯ 를 눌러 펄	교정기의 Normal Hi-Low 출력단을 U1401A 입력단	20ms	20ms @ 5Vrms	±43µs
	스 폭을 선택합니다 .	에 연결합니다.	1s	1s @ 5Vrms	±2ms
6	회전 스위치를 Ω으로 돌	교정기의 Normal Hi-Low	500Ω	500Ω	±0.83Ω
	립니다.	줄력단과 AUX Hi-Low 줄 력단 (케이블 두 개가 묶	5kΩ	$5 \mathrm{k} \Omega$	$\pm 8\Omega$
		여 있음) 을 U1401A 입력 다에 여겨하니다	50k Ω	50k Ω	±80Ω
		근에 전골합니다 .	500k Ω	500k Ω	±800Ω
			5MΩ	5MΩ	$\pm 8 k\Omega$
			50MΩ	50MΩ	± 58 k Ω
7	회전 스위치를 🤝 mA로	교정기의 AUX Hi-Low 출	0.05A	0.045A	±35µA
	돌립니다 . 🕬 를 눌러 DC 를 선택합니다 .	력단을 U1401A 입력단에 연결합니다.	0.5A	0.45A	±0.35mA
8	8 회전 스위치를 ~ mA로 돌립니다 . ☞☞ 를 눌러	교정기의 AUX Hi-Low 출 력단을 U1401A 입력단에	0.05A	0.005A @ 1kHz	±50 μΑ
	AC 를 선택합니다 .	연결합니다.		0.045A @ 1kHz	±50μΑ
			0.5A	0.05A @ 50Hz	±0.5mA
				0.45A @ 60Hz	±0.5mA
9	회전 스위치를 ➡ 로돌 립니다.	다이오드를 순방향 바이 어스 위치로 U1401A 입 력단에 연결합니다 .	2V	1.9V	±1.5mV
10	회전 스위치를 mV 로 돌립 니다. (℡)을 1 초 이상	K 타입 열전쌍을 U1401A 입력단에 연결합니다 .	–40°C ~ 1372°C	0°C	±3°C
	누르고 있습니나 . 		—40°F ~ 2502°F	32°F	±6.096°F

출력 성능 검증

U1401A 휴대용 다기능 교정기 / 미터기의 출력 기능을 검증하려 면 표 7-5 에 명시되어 있는 검증 테스트를 수행하십시오. 각 기능 을 검증하는 데 필요한 권장 테스트 장비는 128 페이지 표 7-1 을 참조하십시오.

표 7-6 출력 성능 검증 테스트

단계	기능	권장 테스트 장비 및 연결	범위 또는 파 라미터	U1401A 출력	1 년 내 공칭 오차
1	회전 스위치를 🕑 위치	U1401A 출력단을 140 페이	±1.5000V	-1.5V	±0.75mV
	중 하나로 돌립니다 .	지 그림 7-1 에서와 같이 3458A 멀티미터에 연결합니		0V	±0.3mV
		다.		+1.5V	±0.75mV
			±15.000V	-15V	±7.5mV
				0V	±3mV
				+15V	±7.5mV
2	2 회전 스위치를 🕢 위치 🛛 U1	U1401A 출력단을 141 페이	±25.000mA	-25mA	±0.125µA
	중 하나로 놀립니나 .	지 그림 7-2 에서와 같이 3458A 멀티미터와 N3300A DC Electronic Load 에 연결합 니다 .		+25mA	±0.125µA
3	회전 스위치를 기기가 위 치 중 하나로 돌립니다 .	U1401A 출력단을 141 페이지 그림 7-3 에서와 같이 53131A	주파수 (10kHz)	4.8kHz	±0.25Hz
	Universal Counter 와 54831B Infiniium Oscilloscope 에 연결 합니다 .	주파수 (1kHz)	600Hz	±0.04Hz	
			듀티사이클 (0.39%~	5V, 25% @ 150Hz	±0.2%
			99.60%)	5V, 75% @ 150Hz	±0.21%

표 7-6 출력 성능 검증 테스트 (계속)

단계	기능	권장 테스트 장비 및 연결	범위 또는 파 라미터	U1401A 출력	1 년 내 공칭 오차
3 (계속)	회전 스위치를 기기가 위 치 중 하나로 돌립니다 .	U1401A 출력단을 141 페이지 그림 7-3 에서와 같이 53131A	펄스 폭 (999.99ms)	5V, 100ms @ 5Hz	±0.3ms
		Universal Counter 와 54831B Infiniium Oscilloscope 에 연결 합니다 .	펄스 폭 (1999.99ms)	5V, 1000ms @ 0.5Hz	±0.3ms

그림 7-1 출력 전압 검증

그림 7-2 출력 전류 검증

그림 7-3 사각파 출력 검증

U1401A 휴대용 다기능 교정기 / 미터기 사용 및 서비스 설명서

사양

8

일반 사양 144 측정 범주 146 측정 범주 정의 146 입력 사양 147 DC 사양 147 AC 사양 148 AC+DC 사양 149 온도 사양 150 주파수 사양 151 1ms Peak Hold 사양 153 저항 사양 153 다이오드 점검 및 가청 연속성 사양 154 출력 사양 155 정전압 및 정전류 출력 155 사각파 출력 156

이 장에서는 U1401A 의 사양을 자세히 설명합니다.

일반 사양

디스플레이

• 기본 및 보조 디스플레이는 모두 5 디지트 LCD 입니다.

51,000 카운트까지 판독할 수 있고 자동 극성 표시 기능이 있습니다 .

전력 소비

- 충전 배터리: 9.3VA (일반)
- 최대 부하 25mA 에서 DC 정전류: 5.5VA (일반) (24V DC 어댑터를 사용한 경우) 또는 2.4VA (일반) (9.6V 배터리를 사용한 경우)
- 미터기 전용: 1.8VA (일반) (24V DC 어댑터를 사용할 경우) 또는 0.6VA (일반) (9.6V 배터리를 사용할 경우)

전원 공급기

- 충전지 1.2V × 8개 (Ni-MH), 카드뮴, 납 또는 수은 미함유
- 외장형 스위칭 어댑터, AC 100V~240V, 50/60Hz 입력 및 DC 24V/2.5A 출력

작동 환경

- 0°C~40°C (32°F~104°F) 에서 최대 정확도
- 31°C 에서 80% RH 까지의 최고 정확도 , 40°C 에서 50% RH 까지 직선 강하

보관 적합성

• -20°C~60°C (-4°F~140°F) (배터리 제외)

안전 적합성

- IEC 61010-1:2001/EN 61010-1:2001 (2 차 개정)
- 캐나다 : CAN/CSA-C22.2 No. 61010-1-04
- 미국 : ANSI/UL 61010-1:2004

측정 범주

• CAT-II 150V, 오염도 2 환경

EMC 적합성

- IEC 61326-2-1:2005/EN 61326-2-1:2006
- 캐나다 : ICES-001:2004
- 호주 / 뉴질랜드 : AS/NZS CISPR11:2004

측정

- 3 회 / 초 (AC+DC: 1 회 / 초)
- 주파수나 듀티사이클 측정 시 1 회 / 초 (>1Hz)
- 펄스 폭 측정 시 0.25~1 회 / 초 (>1Hz)

일반 모드 제거비 (CMRR)

- DC에서 > 90dB, 50/60Hz ±0.1% (1kΩ 불균형)
- 정상 모드 제거비 (NMRR)
- DC 에서 > 60dB, 50/60Hz ±0.1%

온도 계수

- 입력:0.15*(지정 정확도)/°C(0°C~18°C 또는 28°C~40°C)
- 출력 : ±(50ppm 출력 + 0.5 디지트)/ ℃

ヨ기

- H = 192mm
- W = 90mm
- D = 54mm

무게

• 0.98kg (케이스와 배터리 포함)

배터리 수명

- 미터기 기능만 사용할 경우에는 약 20 시간, 미터기 / 소스를 모두 사용할 경우 에는 4 시간 (완전히 충전한 Ni-MH 1300mA 배터리를 사용한 경우)
- 직렬 배터리 전압이 약 9V 밑으로 떨어지면 배터리 부족 표시 기호 (🖽) 가 나타남

충전 시간

 약 3 시간 (10°C ~ 30°C 에서). 배터리가 거의 다 방전된 경우, 배터리를 다시 최 대 용량으로 충전하려면 충전 시간이 더 오래 걸림

품질보증

- 기본 장치에 대해 3 년
- 별도의 명시 사항이 없을 경우 표준 액세서리에 대해 3 개월

측정 범주

U1401A는 2000m 이하에서 측정 범주 II 150V 조건에서 측정하는 데 사용합니다.

측정 범주 정의

측정 범주 I	MAINS 에 직접 연결하지 않은 회로에서 수행하는 측정
	예를 들어 , MAINS 에서 비롯되지 않은 회로와 MAINS 에서 비 롯된 특별 보호 (내부) 회로에서 수행하는 측정이 있습니다 .
측정 범주 II	저전압 설치에 직접 연결한 회로에서 수행하는 측정
	예를 들어 , 가정용 전자제품 , 휴대 도구 및 비슷한 장비에서 수 행하는 측정이 있습니다 .
측정 범주 III	건물 내 고정 설치물에서 수행하는 측정
	예를 들어, 분전반, 회로 차단기, 와이어링(케이블 포함), 버 스바, 연결 상자, 스위치, 고정 콘센트, 산업용 장비, 기타 영구 적으로 고정 설치하는 고정식 모터 등에서 이루어지는 측정이 있 습니다.
측정 범주 IV	저전압 설치물의 소스에서 수행하는 측정
	예를 들어 , 전기 미터기 , 주 과전류 차단 장치 및 리플 제어 장치 등에서 수행하는 측정이 있습니다 .

입력 사양

정확도는 23°C ± 5°C 에서의 ±(판독값의 % + 최소 유효 자리수) 로 표시하며, 상대 습도는 80% R.H. 미만이고 예열 시간은 5 분 이 상인 경우에 한합니다. 예열을 하지 않으면 정확도에 LSD 5 카운 트가 추가됩니다.

DC 사양

표 8-1 DC mV/ 전압 사양

기능	범위	분해능	정확도	과부하 보호
DC mV/ 전압 ^[1]	50mV	1μV	0.05% + 50 ^[2]	250Vrms
	500mV	10μV	0.03% + 5	
	5V	0.1mV		
	50V	1mV		
	250V	10mV		

^[1] 입력 임피던스 : 5V 범위 이상에서 10MΩ (공칭), 50/500mV 범위에서 1GΩ (공칭).

[2] 정확도는 0.05% + 5 까지 높일 수 있습니다. 신호를 측정하기 전에 항상 상대 기능을 사용해 열 자극을 없애십시 오 (테스트 리드 단락).

표 8-2 DC 전류 사양

기능	범위	분해능	정확도	부담 전압 / 분로	과부하 보호
DC 전류	50mA ^[1]	1μA	0.03% + 5	0.06V (1Ω)	250V, 630mA
	500mA ^[1]	10µA		0.6V (1Ω)	속단형 퓨즈

[1] 신호를 측정하기 전에 항상 상대 기능을 사용해 열 자극을 없애십시오. 이 기능을 사용하지 않으면 정확도는
 0.03% + 25 가 됩니다. 다음과 같은 조건에서는열 자극이 존재할 수 있습니다.
 •정전류, 정전압 또는 사각파 출력

•잘못된 작동 방식 - 저항 , 다이오드 또는 mV 측정 기능을 이용해 250V 를 초과하는 고전압 신호를 측정하는 경우 •배터리 충전을 완료한 후

•50mA 초과 전류를 측정한 후

AC 사양

표 8-3 AC mV/ 전압 사양

			정획	·도	
기능	범위	분해능	45Hz ~ 5kHz	5kHz ~ 20kHz	과부하 보호
AC mV/ 전압 ^[1]	50mV	1μV	0.7% + 40	1.5% + 40	250Vrms
(True-rms: 5%~100%)	500mV	10µV	0.7% + 20	1.5% + 20	
070 100707	5V	0.1mV			
	50V	1mV			
	250V	10mV			

^[1] 입력 임피던스 : 5V 범위 이상에서 1.1MΩ (<100pF 와 병렬) (공칭), 50/500mV 범위에서 1GΩ (공칭). 파고율 : ≤ 3.

표 8-4 AC 전류 사양

기능	범위	분해능	정확도 45Hz ~ 5kHz	부담 전압 / 분로	과부하 보호
AC 전류 ^[1]	50mA	1μA	0.6% + 20	0.06V (1Ω)	250V, 630mA
(True-rms: 5%~100%)	500mA	10μΑ		0.6V (1Ω)	속단형 퓨즈

^[1] 파고율:≤**3**

AC+DC 사양

표 8-5 AC+DC mV/ 전압 사양

			정확도		
기능	범위	분해능	45Hz ~ 5kHz	5kHz ~ 20kHz	과부하 보호
AC+DC mV/ 전압 ^[1]	50mV	1µV	0.8% + 70	1.6% + 70	250Vrms
(True-rms: 5%~100%)	500mV	1μV	0.8% + 25	1.6% + 25	
0,0 100,0	5V	0.1mV			
	50V	1mV			
	250V	10mV			

^[1] 입력 임피던스 : 5V 범위 이상에서 1.1MΩ (<100pF 와 병렬) (공칭), 50/500mV 범위에서 1GΩ (공칭). 파고율 : ≤ 3

표 8-6 AC+DC 전류 사양

기능	범위	분해능	정확도 45Hz ~ 5kHz	부담 전압 / 분로	과부하 보호
AC+DC 전류 ^[1]	50mA	1μΑ	0.7% + 25	0.06V (1Ω)	250V, 630mA
(True-rms: 5%~100%)	500mA	10μΑ		0.6V (1Ω)	속단형 퓨즈

^[1] 파고율:≤**3**

온도 사양

표 8-7 온도 사양

기능	열전쌍 유형	범위	분해능	정확도	과부하 보호
온도 ^[1]	К	-40°C ∼ 1372°C	0.1°C	0.3% + 3°C	250Vrms
		–40°F ~ 2502°F	0.1°F	0.3% + 6°F	

^[1] 정확도는 미터기 기능만 사용할 경우에 해당하며 열전쌍 프로브의 허용공차는 배제합니다 .계측기는 슬라이드 스위치를 미터기 전용을 의미하는 M 위치로 설정한 상태로 작업 장소에 1 시간 이상 놔두어야 합니다 .

주파수 사양

표 8-8 주파수 사양

범위	분해능	정확도	최소 입력 주파수	과부하 보호
100Hz	0.001Hz	0.02% + 3	1Hz	250Vrms
1kHz	0.01Hz			
10kHz	0.1Hz			
100kHz	1Hz			
200kHz	10kHz			

전압 측정 시 주파수 감도 및 트리거 레벨

최대 입력 전압 - 주파수 결과 (V-Hz) 와 입력 임피던스에 대해서는 AC 전압 측정을 참조하십시오.

표 8-9 전압 측정 시 주파수 감도 및 트리거 레벨 사양

입력 범위 (피저 저화도에서의 치대 의	최소 (rms 사	감도 각파)	DC 커플링에 대	한 트리거 레벨
력 = 10 x 범위 또는 250V)	1Hz ~ 100kHz	>100kHz	<20kHz	20kHz ~ 200kHz
50mV	15mV	25mV	20mV	30mV
500mV	35mV	50mV	60mV	80mV
5V	0.3V	0.5V	0.6V	0.8V
50V	3V	5V	6V	8V
250V	30V	—	60V	—

듀티 사이클 🗉

표 8-10 듀티사이클 사양

모드	범위	최대 스케일에서의 정확도
DC 커플링	0.1% ~ 99.9%	kHz 당 0.3% + 0.3 %
AC 커플링	5%~95%	

펄스 폭^[1,2]

표 8-11 펄스 폭 사양

범위	최대 스케일에서의 정확도
0.01ms ~ 1999.9ms	0.2% + 3

- [1] 듀티 사이클과 펄스 폭의 정확도는 DC 5V 범위에 대한 5V 사각파를 기준 으로 합니다.
- [2] 펄스 폭은 10µs 보다 커야하며 범위 및 분해능은 신호의 주파수에 따라 정 해집니다. 자세한 내용은 표 8-8 을 참조하십시오.

전류 측정 시 주파수 감도

최대 입력에 대해서는 AC 전압 측정을 참조하십시오.

표 8-12 전류 측정 시 주파수 감도 사양

입력 범위	최소 감도 (rms 사인파) 30Hz ~ 20kHz	
50mA	2.5mA	
500mA	25mA	

1ms Peak Hold 사양

표 8-13 Peak Hold 사양

신호 폭	DC mV/ 전압 / 전류의 정확도	
단일 이벤트 >1ms	모든 범위에서 2% + 400	

저항 사양

다음과 같은 저항 사양은 최대 개방 전압이 +4.8V 미만일 경우에 유효합니다. 연속성 테스트 시, 저항이 10.00Ω 미만일 경우 계측 기에서 신호음이 울립니다.

표 8-14 저항 사양

범위	분해능	정확도	최소 입력 전류	과부하 보호
500Ω ^[1]	0.01Ω	0.15% + 8	0.45mA	250V rms
$5k\Omega^{[1]}$	0.1Ω	0.15% + 5	0.45mA	
50kΩ	1Ω		45μΑ	
500k Ω	10Ω		4.5µA	
5MΩ	0.1kΩ		450nA	
50MΩ ^[2]	1kΩ	1% + 8	45nA	

^[1] 500Ω 및 5kΩ 의 정확도는 상대 기능을 적용한 후에 적용되는 값이며, 이를 통해 테스트 리드 저항과 열 자극을 제 거합니다.

^[2] 50MΩ 범위일 경우 R.H. 는 <60% 입니다 .

다이오드 점검 및 가청 연속성 사양

과부하 차단 기준은 250Vrms 이며 판독값이 대략 50mV 미만일 경 우 계측기에서 신호음이 울립니다.

표 8-15 다이오드 점검 사양

범위	분해능	정확도	테스트 전류	개방 전압
다이오드	0.1mV	0.05% + 5	약 0.45mA	< +4.8VDC

출력 사양

정확도는 23°C ± 5°C 에서의 ±(출력값의 % + 최소 유효 자리수)로 표시하며, 상대 습도는 80% R.H. 미만이고 예열 시간은 5 분 이상인 경우에 한합니다.

정전압 및 정전류 출력

표 8-16 정전압 (CV) 출력 사양

기능	범위	분해능	정확도	최소 출력 전류 ^[2]
정	±1.500V	0.1mV	0.03% + 3	25mA 이상
전압 (CV) ^[1]	±15.000V	1mV		

^[1] 최대 입력 전압 차단 기준은 30VDC 입니다.

^[2] 하중계수: 1.5V 출력일 경우 0.012mV/mA

표 8-17 정전류 (CC) 출력 사양

기능	범위	분해능	정확도	최소 출력 전압 ^[2]
정 전류 (CC) ^[1]	±25.000mA	1μΑ	0.03% + 5	12V 이상 ^[3]

^[1] 최대 입력 전압 차단 기준은 30VDC 입니다.

 $^{[2]}$ 하중 계수 : 1 μ A/V, 최소 출력 전압은 600 Ω 부하에서 20mA 일 경우를 기준으로 합니다 .

^[3] 전류 루프에 24V 전원이 흐를 경우,노란색 특수 리드를 사용해 1200Ω 에서 20mA 전류와 함께 최소 출력 범위 24V 를 얻을 수 있습니다.

사각파 출력

최대 입력 전압 차단 기준은 30VDC 입니다.

표 8-18 사각파 출력 사양

출력	범위	분해능	정확도
주파수 (Hz)	0.5, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80, 100, 120, 150, 200, 240, 300, 400, 480, 600, 800, 1200, 1600, 2400, 4800	0.01	0.005% + 1
듀티사이클 (%) ^[1]	0.39% ~ 99.60%	0.390625%	0.01% + 0.2% ^[2]
펄스 폭 (ms) ^[1]	1/ 주파수	범위 /256	0.01% + 0.3ms
진폭 (V)	5V, 12V	0.1V	2% + 0.2V
	±5V, ±12V		2% + 0.4V

- [1] 다른 주파수에서 듀티 사이클이나 펄스 폭을 조절하려면 정극성 또는 부극성 펄스 폭이 50µs 보다 커야 합니다. 또한 정확도 및 범위는 정의와 다릅니다.
- ^[2] 신호 주파수가 1kHz 보다 클 경우 , 정확도에 kHz 당 0.1% 를 더해야 합니다.

www.agilent.com

연락처 서비스나 보증 또는 기술 지원을 받으려면 아래 전화번호 또는 팩스번호로 연락하십시오. 미국: (전화) 800 829 4444 (팩스) 800 829 4433 캐나다: (전화) 877 894 4414 (팩스) 800 746 4866 중국 : (전화) 800 810 0189 (팩스) 800 820 2816 유럽 : (전화) 31 20 547 2111 일본 : (전화) (81) 426 56 7832 (팩스) (81) 426 56 7840 한국: (전화) (080) 769 0800 (팩스) (080) 769 0900 라틴 아메리카 : (전화) (305) 269 7500 대만: (전화) 0800 047 866 (팩스) 0800 286 331 기타 아시아 태평양 국가 : (전화)(65)63758100 (팩스)(65)67550042

또는 다음 Agilent 웹사이트를 방문하십시오 . www.agilent.com/find/assist

본 문서에 나오는 제품 사양과 설명은 예고 없 이 변경될 수 있습니다 . 항상 Agilent 웹 사이트 에서 최신 개정판을 참조하십시오 .

© Agilent Technologies, Inc., 2009

초판: 2009 년 1 월 12 일

U1401-90008

